
libpd: Past, Present, and Future of Embedding Pure Data

Peter Brinkmann
Google Inc

peter.brinkmann@gmail.com

Dan Wilcox
University of Denver

danomatika@gmail.com

Tal Kirshboim
tal.kirshboim@gmail.com

Richard Eakin
rich.eakin@gmail.com

Ryan Alexander
Okaynokay

scloopy@gmail.com

Abstract

libpd is a C library that turns Pure Data into an
embeddable audio synthesis library, with wrappers
for a range of languages and support for mobile
platforms such as iOS and Android. We present
an update on developments that have happened
since PdCon11, including a discussion of libpd in
creative environments and the emergence of apps
that provide platforms for deploying Pd patches
to mobile devices with little to no code. Looking
forward, we discuss some challenges for future de-
velopment, including questions of real-time safety
and support for concurrency, as well as support for
multiple instances. Finally, we examine the rela-
tionship of libpd to Pd itself.

Keywords

library, dsp, embedding Pure Data

1 Introduction

libpd began in July 2010, as a learning project
whose only goal was to run Pd patches on Android
devices. The core library emerged as a byproduct
of a refactoring of the original solution. Within a
few months of its publication, the team at RjDj
decided to replace their in-house solution for em-
bedding Pure Data with libpd. This led to the
creation of Pd for iOS, whose open-source release,
along with the creation of the Pd Anywhere fo-
rum at Create Digital Noise, marked the beginning
of an exciting period of growth and creativity as
libpd was adopted by hundreds of researchers and
developers. Six years later, it is still going strong.

We presented the design of libpd and its lan-
guage wrappers for Java and iOS at PdCon11
[1]. Much like Pd itself, the core library has re-
mained rather stable, but thanks to the efforts of
several dedicated contributors, the original, hap-
hazard packaging has been replaced by proper re-
lease engineering. The integration of libpd into

creative coding environments such as OpenFrame-
works and Cinder as well as the emergence of
general-purpose apps based on libpd have further
supported the growth and adoption of libpd.

The purpose of this paper is to give an account
of important technical developments around libpd
that have occurred since PdCon11 and to identify
problems that we will need to solve if libpd is to
remain relevant, such as concurrency and support
for multiple instances.

2 The Current State

Simply put, libpd is Pure Data vanilla with-
out the graphical user interface or audio backends.
It is not a fork of Pd. The Pure Data source
code is included in the libpd git repository as a
git submodule and directly tracks stable upstream
releases. Further, any libpd-related bug fixes for
the Pure Data core are submitted upstream to en-
sure the libpd codebase does not diverge. So far,
this practice has propagated a number of fixes for
64bit related issues on iOS back into Pure Data
with the help of Miller Puckette and community
members.

2.1 Building

Building libpd is handled by a Makefile that com-
piles the core libpd C library as well as C++, Java,
and C# wrappers. Make options also control the
conditional compilation of libpd utilities and the
bundled externals in the Pure Data extra direc-
tory. The Python wrapper is built using a tradi-
tional setup.py script that first builds the C li-
brary using the main Makefile. Obj-C support for
iOS and macOS is provided via the included libpd
Xcode project which is also utilized by the sample
projects in the Pd for iOS repository.



2.2 Workflow and Release Cycle

The core libpd C API has been stable for a while.
Most current work revolves around creation and
maintenance of the various language wrappers. As
of 2014, libpd uses semantic versioning and keeps
a changelog between versions. Major changes are
undertaken and tested in git branches, simple up-
dates are committed to the master branch, which
can be considered generally stable, and stable re-
lease versions are git tagged. Tagging allows for
support by library management systems including
CocoaPods via libpd’s included libpd.podspec file
and NuGet.

2.3 Documentation

High-level documentation comes in the form of the
libpd website at http://libpd.cc, the libpd book
“Making Musical Apps” [2], and sample projects
such as those included with the Pd for iOS and Pd
for Android repositories on GitHub. Low-level de-
velopment documentation is available on the libpd
GitHub wiki1 which details build settings, per-
language APIs, and working with libpd in various
software environments. Supplementary informa-
tion is largely community-based on the Pure Data
mailing lists, forums, and via third parties through
text and video tutorials.

2.4 C++ Wrapper

The development of the libpd C++ wrapper be-
gan in early 2011 as part of ofxPd, a libpd add-
on library for the OpenFrameworks creative cod-
ing toolkit, and was integrated into libpd itself
a year later. Influenced by the Java wrapper,
the C++ interface is built around a class called
PdBase which wraps the main libpd C API, base
receiver classes for messages and MIDI data, and a
set of convenience classes for the variable list data
type and unique patch identifier. All classes are
declared within the “pd” namespace. Additionally,
PdBase provides a C++ style stream interface for
message building and sending:

pd << StartMessage() << 1.23

<< "sent from a streamed list"

<< FinishList("fromCPP");

A minimal libpd C++ use case involves the
following: implementing a subclass of PdReceiver

and/or PdMidiReceiver for message handling; cre-
ating and initializing an instance of PdBase; creat-
ing a receiver subclass instance and setting PdBase
to use it; subscribing to any required message
sources; opening a patch; starting audio; and call-
ing one of the PdBase process functions in an audio
callback. The C++ wrapper does not contain an
audio interface but can easily be dropped into a
project using a cross-platform audio library such
as PortAudio or RtAudio.

Optionally, PdBase can be built with a
C++11 std::mutex to provide thread safety if the
LIBPD_USE_STD_MUTEX compiler macro is defined,
and it can be configured to pass messages through
a lock-free ringbuffer in the C layer. Also, the
C++ wrapper is forward-designed as PdBase cur-
rently utilizes a protected PdContext singleton
class as a placeholder for possible upcoming multi-
instance support.

2.5 ofxPd

ofxPd is a C++ add-on library for the OpenFrame-
works creative coding toolkit that runs an instance
of Pure Data within an OpenFrameworks applica-
tion [3]. Audio, messages, and MIDI events can
be passed to and from Pure Data patches with the
OF run loop and the library is thread safe. The
main ofxPd class is a convenience wrapper around
the libpd C++ wrapper that adds support for mul-
tiple message and MIDI receivers, routing specific
message sources to specific receiver class instances,
and small changes such as updating MIDI channel
ranges from 0-15 to 1-16 to match the numbers
used in Pure Data itself.

Figure 1: NodeBeat scene on iPad

OpenFrameworks projects using ofxPd include
NodeBeat, NinjaJamm, and Scrapple. Nodebeat
is a node-based visual music app for iOS, Android,
macOS, and Windows by Seth Sandler, Justin

1https://github.com/libpd/libpd/wiki

http://libpd.cc
https://github.com/libpd/libpd/wiki


Windle, and Laurence Muller [4]. Record label
Ninja Tune’s NinjaJamm is a looper for Android
and iOS with live effects and high quality, artist
curated sample packs [5]. Scrapple is an interac-
tive installation by media artist Golan Levin that
uses computer vision to interpret the shapes of
physical objects on a projected surface as a live
visual score [6]. The audio engine for Scrapple was
rebuilt in 2012 using ofxPd and features a bank of
128 FM synthesis voices.

2.6 Cinder and libpd

libpd can be used with the Cinder C++ cre-
ative coding library with an add-on called Cinder-
PureDataNode [7]. Cinder has its own cross-
platform, modular audio processing graph, in
which the entire Pure Data context can be uti-
lized as a node. The ability to process audio from
both Cinder and Pd can be very powerful, allowing
for the use of OpenGL for rich visuals, platform-
specific file decoders and encoders, and low level
DSP tools such as sample rate conversion.

Figure 2: Seaquence on iPad

Cinder-PureDataNode was used extensively in
the upcoming iOS app Seaquence [8], which fea-
tures a stereo spacialized 10 voice, 50 note poly-
phonic subtractive synthesis engine built entirely
with Pd. The ability to test and work on the synth
outside the iOS app was a major win for Seaque-
nce developers in terms of iteration time. Also, the

ability to collaborate with knowledgeable members
of the synthesis community was invaluable.

2.7 C# and NuGet

LibPDBinding, the C# wrapper for libpd was
written by Tebjan Halm in 2012 for Windows
.NET and acts as a thin layer around the C API
with support for thread synchronization. In 2016,
Thomas Mayer updated the build system to sup-
port 64bit on Windows and the MONO platform
on Linux and macOS. Additionally, builds of libpd
for C# are now hosted on NuGet [9], an open
source package management system for Microsoft
development, which greatly simplifies adding libpd
to a C# project in Visual Studio or a supported
MONO environment.

2.8 Pd for Android

Developing for the Android platform has changed
substantially since the initial libpd release. An-
droid Studio was released in late 2014 together
with a new gradle build tool plugin for Android.
These have replaced the Eclipse IDE and the ant
build tool that were used for building Android ap-
plications until that time. The Pd for Android
project was migrated to use this new toolchain in
early 2015.

Another change that followed the migration to
Android Studio was releasing Pd for Android as a
maven artifact on JCenter [10]. Using JCenter to
resolve Android dependencies is a common prac-
tice in Android development, and it significantly
reduced the amount of effort involved in integrat-
ing Pd for Android in new Android apps. Prior to
the release on JCenter, developers had to clone the
project repository and its submodules and build
the Java as well as the C code in the project, the
latter using the Android NDK. With the JCenter
dependency, all that is required in order to include
Pd for Android in an app is to add a single line in
the application’s build file. When developers wish
to use Pd externals which are not part of libpd in
an Android app, they will still have to resort to
the original and more complex way of integrating
Pd for Android.

As part of the process of releasing Pd for An-
droid on Jcenter, the btmidi2 submodule that al-
lows sending and receiving MIDI on Android de-
vices was released on JCenter as well. While An-
droid already includes MIDI support from version

2https://github.com/nettoyeurny/btmidi

https://github.com/nettoyeurny/btmidi


6.0 Marshmallow on, the btmidi module allows de-
vices with older Android versions to use MIDI.

Aside from the project-related structural
changes mentioned here, Pd for Android proves
itself to be very stable, even on newer Android
versions. Problems that are reported with the li-
brary are often not specific to Pd for Android, but
rather general issues with audio performance.

2.9 CocoaPods

As of 2013, libpd includes a podspec file for Co-
coaPods3, a library dependency manager for iOS
and macOS projects. This allows for the easy ad-
dition of libpd to an Xcode project without the
need to manually include files and/or fiddle with
build settings, thereby increasing deployment and
accessibility. CocoaPods support was contributed
to libpd by members of the CocoaPods community.

2.10 General Purpose Mobile Apps

Inspired by Reality Jockey’s original RjDj app, a
number of general purpose mobile applications for
hosting libpd-based projects have been developed:
DroidParty, MobMuPlat, and PdParty. Each of
these apps can run Pure Data patches, access
touch and sensor events, and support encapsulated
scene directories including metadata, abstraction
libraries, and sound files.

DroidParty by Chris McCormick pioneered the
concept of recreating GUI objects (bang, tog-
gle, hslider, etc) on Android [11]; Daniel Iglesia’s
MobMuPlat (Mobile Music Platform) for iOS and
Android provides a custom GUI designer and sup-
ports OSC, MIDI, and networking features [12];
iOS app PdParty by Dan Wilcox faithfully repli-
cates all Pure Data GUI objects, incorporates a
web server and patch browser, and supports simi-
lar communication features to MobMuPlat [13].

3 Future Development

While the stability of libpd is generally a sign
of success, we will need to make sure it remains
relevant and maintainable as technology and engi-
neering practices progress.

3.1 Visual Studio Support

Currently, the libpd C sources do not compile in
Microsoft Visual Studio, mostly due to historical
issues related to supported C versions that require

changes to the Pure Data core. Consequently,
builds of the library on Windows thus far have re-
lied on MinGW. Newer versions of Visual Studio
include C99, and it will be worthwhile to revisit
any needed source updates to support building for
platforms including Windows and Xbox, as well as
the Windows app store.

3.2 Autotools

libpd currently relies on a single Makefile for most
of its build and install options. As support for
various languages, operating systems, and envi-
ronments has grown, so has the complexity of the
Makefile. A more sustainable long term approach
for building, maintenance, and distribution would
be to convert the project to use autoconf and au-
tomake which provide standard mechanisms for
OS and compiler specific configuration, compile
time options, and distribution tarball creation.

3.3 Alternatives to Locking

When processing audio in real time, it is gener-
ally advisable to avoid locks because of the risk
of priority inversions. We do not agree with the
frequently heard admonition to never use locks;
since none of the popular operating systems are
hard real-time systems, glitches are always possi-
ble, and so the question of whether to use locks is
just another trade-off.

When working with a code base that predates
ubiquitous multiprocessing, it is often hard or im-
possible to avoid locks. Pd falls into this category.
libpd addresses this problem by deliberately dis-
carding Pd’s built-in global mutex lock, leaving the
core library lock-free. That does not mean, how-
ever, that it is thread safe. Rather, the question
of how to synchronize libpd calls is left to higher-
level components, usually wrappers for languages
like Java and C++.

The distribution of libpd includes a lock-free
queue that is meant to reduce the need for locks.
In practice, the trade-off we chose for most use
cases is to pass outgoing messages (i.e. messages
from Pd to the ambient app) through the lock-free
queue, while passing incoming messages individu-
ally when holding a lock. The main reason for this
is Pd’s symbol table, which sits at the center of
most of Pd’s operations and is not thread safe.

While this approach has held up well in most
cases, there is the possibility of audio dropouts

3https://cocoapods.org

https://cocoapods.org


when sending too many messages to Pd. Solving
this in a general, performant way will probably re-
quire replacing Pd’s symbol table with an imple-
mentation that is both thread and real-time safe.

3.4 Multiple Instances

The Pure Data core was originally written to
be used within a single application and uti-
lizes little data encapsulation, which makes
it difficult to use within multi-context, multi-
threaded environments such as reusable audio
plugins. Preliminary work on multiple in-
stance support by Miller Puckette in 20144 al-
lows for context creation and switching with the
pdinstance_new() and pd_setinstance() func-
tions using a t_pdinstance type:

t_pdinstance *pd1 = pdinstance_new();

t_pdinstance *pd2 = pdinstance_new();

...

pd_setinstance(pd1); // 1st instance

libpd_openfile(argv[1], argv[2]);

pd_setinstance(pd2); // 2nd instance

libpd_openfile(argv[1], argv[2]);

This approach has been built upon by Kjetil
Matheussen’s Radium graphical DAW [14] and
Pierre Guillot’s Camomile VST plugin [15], both
of which utilize custom wrappers of the Pure Data
core with improved support for multiple instances
and multithreading. Hopefully, this community
work can be reincorporated into libpd and Pure
Data.

3.5 libpd as a Core for Alternate GUIs

libpd’s API is a standardized interface for mes-
sage communication and sample I/O with the Pure
Data DSP core. By abstracting much of the detail,
omitting unused backends, and providing dummy
interfaces, the changes made to the Pure Data
source code allow for a simple embeddable C li-
brary suitable for use within other languages and
environments beyond the desktop TCL/TK GUI.

Looking forward, this approach can be used to
standardize communication between the core and
the GUI, allowing for the creation of alternate edit-
ing GUIs using libpd. Jonathan Wilkes’s GUI mes-
saging specification for Purr Data provides a pre-
liminary roadmap5. If this work can be integrated
into the main Pure Data source and elements of

the GUI code such as Undo/Redo be factored out
into overridable C files with standard APIs, the
various flavors of Pure Data (vanilla, Pd-L2ork,
Purr Data) could all share the same upstream de-
velopment source while maintaining their own cus-
tomizations and improvements. Additionally, a fu-
ture version of libpd with GUI messaging would
facilitate the creation of even more esoteric edit-
ing environments such as an ncurses-based ASCII
GUI or patch creation on mobile devices.

4 Conclusion

The first six years of libpd have seen the adop-
tion and steady growth of a Pure Data-based
ecosystem. Support for numerous programming
languages and development environments has been
added, leading to a new variety of audio visual
apps, digital instruments, and sonic experiences.
At this point, libpd development is largely stable
but, moving forward, there are a number of im-
provements that can be made for libpd to work
within audio plugins and as a core for new GUIs.
The future is bright for Pure Data patches as the
basis for continued computer music expression.

Acknowledgments

We thank everyone who contributed to libpd over
the past six years, as well as everyone who made
it a success by building amazing apps with it. It
is an honor and a privilege to be a part of this
community.

Peter Kirn maintains the libpd website: libpd.cc.

The development of ofxPd was supported by the
CMU Frank-Ratchye Studio for Creative Inquiry
and director Golan Levin.

References

[1] P. Brinkmann, P. Kirn, R. Lawler, C. Mc-
Cormick, M. Roth, and H.-C. Steiner, “Embedding
Pure Data with libpd,” in Pure Data Convention
Weimar 2011, 2011.

[2] P. Brinkmann, Making Musical Apps: Real-
time Audio Synthesis on Android and iOS.
O’Reilly Media, 2012.

[3] D. Wilcox, “ofxPd: a Pure Data addon for
OpenFrameworks using libpd.” [Online]. Avail-

4https://lists.puredata.info/pipermail/pd-dev/2014-05/019832.html
5https://git.purrdata.net/jwilkes/purr-data#gui-messaging-specification

http://libpd.cc
https://lists.puredata.info/pipermail/pd-dev/2014-05/019832.html
https://git.purrdata.net/jwilkes/purr-data#gui-messaging-specification


able: https://github.com/danomatika/ofxPd

[4] “NodeBeat.” [Online]. Available: http://
nodebeat.com

[5] “NinjaJamm.” [Online]. Available: http://
www.ninjajamm.com

[6] G. Levin, “Scrapple.” [Online]. Available:
http://flong.com/projects/scrapple

[7] R. Eakin and R. Alexander, “Cinder-
PureDataNode.” [Online]. Available: https://
github.com/notlion/Cinder-PureDataNode

[8] R. Alexander and G. Dunne, “Seaquence.” [On-
line]. Available: http://okaynokay.xyz/presskit/
seaquence

[9] “LibPDBinding on NuGet.” [Online].
Available: https://www.nuget.org/packages/
LibPdBinding

[10] “pd-for-android on JCenter.” [Online].
Available: https://bintray.com/pd-for-android/
maven/pd-for-android

[11] C. McCormick, “DroidParty.” [Online]. Avail-
able: http://www.droidparty.net

[12] D. Iglesia, “MobMuPlat.” [Online]. Available:
http://danieliglesia.com/mobmuplat

[13] D. Wilcox, “PdParty.” [Online]. Available:
https://github.com/danomatika/PdParty

[14] K. Matheussen, Available: http://users.
notam02.no/~kjetism/radium/

[15] P. Guillot, “Camomile.” [Online]. Available:
https://github.com/pierreguillot/Camomile/wiki

https://github.com/danomatika/ofxPd
http://nodebeat.com
http://nodebeat.com
http://www.ninjajamm.com
http://www.ninjajamm.com
http://flong.com/projects/scrapple
https://github.com/notlion/Cinder-PureDataNode
https://github.com/notlion/Cinder-PureDataNode
http://okaynokay.xyz/presskit/seaquence
http://okaynokay.xyz/presskit/seaquence
https://www.nuget.org/packages/LibPdBinding
https://www.nuget.org/packages/LibPdBinding
https://bintray.com/pd-for-android/maven/pd-for-android
https://bintray.com/pd-for-android/maven/pd-for-android
http://www.droidparty.net
http://danieliglesia.com/mobmuplat
https://github.com/danomatika/PdParty
http://users.notam02.no/~kjetism/radium/
http://users.notam02.no/~kjetism/radium/
https://github.com/pierreguillot/Camomile/wiki

	Introduction
	The Current State
	Building
	Workflow and Release Cycle
	Documentation
	C++ Wrapper
	ofxPd
	Cinder and libpd
	C# and NuGet
	Pd for Android
	CocoaPods
	General Purpose Mobile Apps

	Future Development
	Visual Studio Support
	Autotools
	Alternatives to Locking
	Multiple Instances
	libpd as a Core for Alternate GUIs

	Conclusion
	Acknowledgments
	References

