
libpd
Past, Present, and Future of Embedding Pure Data

Peter Brinkmann Dan Wilcox Tal Kirshboim Rich Eakin
Ryan Alexander

November 19th, 2016



Introduction



Complete Coincidence

libpd began in July 2010 as a learning project
Original goal: run Pd patches on Android devices
Built on top of preliminary work by Naim Falandino, Peter
Kirn, and Hans-Christoph Steiner
iOS branch grew out of collaboration with RjDj
Now used in many projects



Current State



libpd and Pd Vanilla

libpd is Pd Vanilla without the GUI or audio backends
Not a fork of Pd; Pd repo is included as a Git submodule
The core of libpd is just a thin C wrapper around Pd, with an
audio processing function and a message passing mechanism
Bug fixes to the Pd core are discussed and submitted
upstream (e.g. 64-bit related fixes)



Ecosystem

Language bindings for Java, ObjC, C++, Python, C#
Audio glue for Android and iOS
Integration into creative coding environments
(OpenFrameworks, Cinder, Processing)
Integration into Unity game engine
General purpose mobile apps (RjDj app, PdDroidParty by
Chris McCormick, MobMuPlat by Daniel Iglesia, PdParty by
Dan Wilcox)



Releases and Distribution

Core libpd C API largely stable since 2010 (a lock-free queue
for passing messages was added later)
Semantic versioning added in 2014 including a Changelog
Development workflow:

Master branch is largely stable
Stable releases are git tagged
Minor changes are generally submitted to the master branch
Major changes discussed and implemented in topic branches

Git tagging versions allows for support by package
management schemes
Cocoapods library dependency management for iOS and
macOS Xcode projects
NuGet package management for C# by Thomas Mayer
JCenter and CircleCI support for Android by Tal Kirshboim
and Joe Bowbeer



Documentation

High-level:
libpd website: http://libpd.cc
libpd book: “Making Musical Apps”
sample projects: pd-for-ios and pd-for-android on Github

Low-level:
libpd wiki on Github: build settings, language APIs, working
libpd in various software environments

Supplementary information is community based:
mailing lists
forums
3rd party text and video tutorials

http://libpd.cc


C++ Wrapper

Began in early 2011 as part of the ofxPd addon library for
OpenFrameworks
Later adapted for general use and integrated with libpd a year
later
Design influenced by Java wrapper:

PdBase: main class which wraps main libpd C API
PdReceiver: message receiver base class
PdMidiReceiver: MIDI receiver base class
PdPatch & PdList: convenience classes for instance identifier
and variable list data

Declared within pd namespace



C++ Wrapper

PdBase provides a C++ stream interface for message building and
sending:

pd << StartMessage() << 1.23
<< "sent from a streamed list"
<< FinishList("fromCPP");

Can be built with C++11 std::mutex for thread safety via
compiler define
Can be initialized to use libpd ringbuffer utility layer for
messaging
Currently uses protected PdContext singleton class and can be
updated for multi-instance support without C++ API changes



ofxPd

ofxPd is a C++ addon library for OpenFrameworks
Audio, messages, and MIDI events can be passed between
libpd and the OF run loop
Implemented as an OF-specific subclass of the libpd C++
wrapper PdBase class which adds:

support for multiple message and MIDI receivers
routing messages from specific sources to dedicated receiver
instances
small changes like changing MIDI channel range from 0-15 to
1-16 to match range used in Pd itself



ofxPd

Figure 1: NodeBeat scene on iPad



ofxPd

App examples (tiny selection):

Nodebeat: node-based visual music app for iOS, Android,
macOS, and Windows by Seth Sandler, Justin Windle, and
Laurence Miller
NinjaJamm: chopper-looper by Ninja Jamm for Android and
iOS with high quality curated sample packs
Scrapple: interactive installation by media artist Golan Levin
which uses computer vision to interpret the shapes of physical
objects on a projected surface as a visual score



Cinder and libpd

Figure 2: Seaquence on iPad



Cinder and libpd

Cinder-PureDataNode is an addon for the Cinder creative
coding library
Cinder has its own modular audio processing graph and libpd
can be used as a node
Allows for OpenGL for visuals, platform-specific file decoders
and encoders, and low level DSP tools such as sample-rate
conversion



Cinder and libpd

Seaquence: iOS app built using Cinder and
Cinder-PureDataNode which a stereo spatialized 10 voice, 50
note polyphonic subtractive synthesis engine
Development iteration time was very short thanks to the
ability to build and test the audio engine in Pure Data
Input and collaboration with the synthesis community also
benefited from using Pure Data



Future Development



Concurrency and Realtime Safety

Good practices for audio development
No locks
Don’t allocate memory on audio thread

But…
Locks are often hard to avoid when working with legacy code
Popular operating systems are not real-time systems, i.e.,
glitches are always possible
Not black and white, better to think in terms of “mean time
between glitches”
So, the question of whether to use locks is just another tradeoff

Then again…
Let’s reduce the need for locking, e.g. by revising the Pd
symbol table
That’ll also help with multi-instance support



libpd as a Core for Alternate GUIs

Create alternate editing GUIs on top of libpd
Enable different flavors of Pd sharing the same upstream
development source
libpd with GUI messaging would facilitate the creation of
esoteric editing environments (e.g. ncurses-based ASCII GUI,
patch edition on mobile devices)
Jonathan Wilkes’s GUI messaging specification for Purr Data
provides a roadmap



Conclusion



Acknowledgments

Many contributors…
Chris McCormick, Dan Wilcox, Hans-Christoph Steiner, Joe
Bowbeer, Martin Roth and RjDj, Miller Puckette, Naim
Falandino, Peter Brinkmann, Peter Kirn, Richard Eakin,
Richard Lawler, Ryan Alexander, Tal Kirshboim, Tebjan Halm,
Thomas Mayer…

… but we still need help!
Windows developers
Release engineers, especially for Processing library and Link
external

Finally, many thanks to everybody who’s building awesome
stuff with libpd!


	Introduction
	Current State
	Future Development
	Conclusion

