
PdParty: An iOS Computer Music Platform using libpd

Dan Wilcox
University of Denver

danomatika.com
danomatika@gmail.com

Abstract

This paper presents PdParty, an open-source iOS
application for running Pure Data patches on Ap-
ple mobile devices using libpd. Directly inspired
by Chris McCormick’s PdDroidParty for Android
and the original RjDj by Reality Jockey, PdParty
takes a step further by supporting OSC (Open
Sound Control), MIDI, & MiFi game controller
input as well as implementing the native Pd GUI
objects for a WYSIWYG patch to mobile device
experience. Various scene types are supported in-
cluding compatibility modes for PdDroidParty &
RjDj and both patches and abstraction libraries
can be managed via a built-in web server. Un-
like the rise of the single-purpose audio applica-
tion, PdParty is meant to provide a platform for
general purpose digital signal processing via Pure
Data patches.

Keywords

mobile, libpd, wearable computing

1 Introduction

Projects such as PD-Anywhere by Günter
Geiger [1] have pioneered using Pure Data as a
lingua franca for DSP between desktop & mobile
platforms. The 2008 release of Reality Jockey’s
commercial RjDj application for iOS [2] built upon
this work through the concept of user-friendly
scenes with bundled content and included access to
built-in smart phone sensor events such as multi-
touch, accelerometers, and GPS. RjDj “songs” are,
in fact, Pure Data patches running live on the
users device, allowing for interactive & generative
audio beyond simple playback. This approach al-
lowed for both distribution of artist scenes to lis-
teners as well as a platform for computer musi-
cians fluent with Pure Data itself. In 2010, Pe-
ter Brinkmann, with help from the RjDj team, re-
leased the first version of libpd [3], an embeddable
DSP library using the core of Pure Data itself,
much to the benefit of the community.

2 Background

Figure 1: robotcowboy @ New Media Meeting in
Norkörping SE 2009

robotcowboy is the author’s ongoing human-
computer wearable performance project. Focusing
on the embodiment of computational sound, robot-
cowboy was originally built in 2006-2007 as an MS
thesis project using an industrial wearable com-
puter1 running GNU/Linux & Pure Data, external
stereo USB sound & MIDI interfaces, and various
input devices including HID gamepads. Influenced
by roadworthy analog gear, chief system require-
ments are mobility, plug-in-play, reliability, & low
cost. Compositional approaches must include live
input/generation and room for failure as opposed
to overly sequenced output. [4]

The original robotcowboy system hardware was
gigged often, went on a 2 month tour of the United
States in 2008, and lasted until the 2011 Pd Con-
vention in Weimar. Around this time, Apple re-
leased the iPad 2 which featured a dual core pro-
cessor and, most importantly, supported USB au-
dio & MIDI interfaces. Seeking an option for new
system hardware, the author began on and off de-
velopment of an iOS application that could per-
form all of the tasks required for a live robotcowboy
performance: run patches, full duplex stereo au-
dio, MIDI, HID game controller support, & Open
Sound Control communication.

1Xybernaut MA-V 500 Mhz P3 256 MB RAM, $350 second hand on Ebay.com in 2006

Figure 2: robotcowboy hardware 2007: Roland
UA-25 audio interface, Xybernaut MA-V

wearable computer, USB hub

3 PdParty

The development of what became PdParty be-
gan in 2011 as the “robotcowboy app” using the
OpenFrameworks C++ creative coding toolkit.
Over the course of a year, a set of OF add-on
libraries were also developed and/or updated to
provide required capbilities: ofxPd to wrap libpd
[5], ofxLua as a scripting engine for visual inter-
faces, and ofxMidi to provide MIDI support. By
the fall of 2012, the alpha prototype was working2

but the author felt the scope of the project had
far outgrown the core needs of robotcowboy and a
slimmed-down approach was needed.

Around this time, Chris McCormick released
PdDroidParty for Android which pioneered the
concept of emulating native Pure Data GUIs in a
mobile device app [6]. In early 2013, PdParty be-
gan as a native Objective-C port of PdDroidParty
focused on usability as a general purpose platform
for running Pure Data patches.

3.1 Focus

Figure 3: Demo patch in Pure Data on macOS

PdParty is focused on the easy deployment &
playback of Pure Data patches on iOS devices. To
that effort, great care has been taken to accurately

emulate all aspects of the built-in GUI objects:
number, symbol, comment, number2, bang, tog-
gle, sliders, radios, vumeter, and canvas. This en-
ables a WYSIWYG patch UI experience between
desktop & mobile usage as opposed to requiring
custom tools and/or programming.

Figure 4: Demo patch in PdParty on iPhone

Like Pure Data itself, PdParty is meant as a
general purpose platform for new expression and
attempts to stick with Pd idioms as much as pos-
sible. Usage should be straight forward and “plug
and play.”

3.2 Features

The main features of PdParty include a libpd
core, native GUI object emulation, scene types,
onscreen controls, sensor events, game controller
support, MIDI, OSC network communication, and
a built-in web server. PdParty is a universal app
which runs on both iPhone and iPad with appro-
priate interfaces and is released as open-source on
GitHub.

3.2.1 libpd

PdParty is built around libpd, a wrapper library
for the Pure Data vanilla DSP core with an in-
cluded Objective-C AudioUnit. Patches created
in vanilla will work directly in libpd, including
those using the extra externals including [expr~],
[sigmund~], etc. Additionally, the following ex-
ternals are also included to provide access to di-
rectory information & midi files: ggee [getdir],
[stripdir], and mrpeach [midifile]. As iOS
does not allow dynamic library loading, all exter-
nals are compiled into the application itself.

2“robotcowboy app” alpha demo video: https://vimeo.com/52557228

https://vimeo.com/52557228

3.2.2 GUI Emulation

PdParty emulates the Pure Data built-in GUI ob-
jects via CoreGraphics drawing routines in native
Objective-C. When loading a patch or scene, the
main patch is parsed, supported objects are identi-
fied by object name, and those with send/receive
names are created and added to the main patch
view. When interacting with the patch, control
messages are intercepted using each object’s send
and/or receive names via libpd. GUI objects with-
out send/receive names are ignored. Screen ori-
entation is interpreted based on the aspect ratio
of the patch canvas itself and emulated GUI ob-
ject placement is scaled to approximate the origi-
nal patch on desktop.

Patching a UI for PdParty follows the Model-
View-Controller design pattern with GUI objects
acting as both view & controller elements which
communicate with the core logic of the patch
via sends/receives. This approach was adapted
from PdDroidParty whose custom GUI objects are
also emulated: display, knob, loadsave, menubang,
numberbox, ribbon, taplist, touch, and wordbut-
ton.

3.2.3 Scene Types

Beyond plain patches, PdParty supports running
“scenes” which are folders with a specific layout
that are treated as a single entity for encapsula-
tion and have certain attributes. RjDj scene fold-
ers end with “.rj”, contain a _main.pd patch, and
an optional thumbnail, background image, and
Info.plist metadata file. PdDroidParty scene fold-
ers contain a droidparty_main.pd patch and op-
tional an background image and .ttf font file. Na-
tive PdParty scene folders contain a _main.pd
patch and an optional thumbnail and info.json
metadata file.

The scene type specifies supported attributes
such as required sensors and preferred samplerate.
RjDj scenes are locked to portrait on iPhone, touch
events are normalized to 0-320, additional sensors
are accessed via rj sensor abstractions, and a 22050
Hz samplerate is used. PdDroidParty scenes are
locked to landscape, do not require touch or accel-
rerometer events, and additional sensors are ac-
cessed via the [droidsystem] object. PdParty
scenes infer orientation from patch aspect ratio,
normalize touch events to 0-1, and support all sen-
sor types.

3.2.4 Onscreen Controls

Figure 5: Onscreen control popover on iPhone

Inspired by the original RjDj app, onscreen
controls appear either on the scene view itself
for RjDj scenes or via a popover view con-
troller for plain patches and all other scene
types. Controls are DSP play/pause, record, mi-
crophone input level, scene restart, and an op-
tional button to open a console view for debug-
ging. As with RjDj, patches should use the rjlib
[soundinput]/[soundoutput] abstraction wrap-
pers for [adc]/[dac] which are required to enable
the microphone input level and live recording con-
trols.

3.2.5 Sensor and Control Events

Figure 6: PdParty event receivers

PdParty provides access to the touch screen,
accelerometer, gryoscope, magnetometer, GPS an-
tenna, and built-in compass on an iOS device via
events to special receive names starting with a
‘#’. The #touch, #accelerate, and #loc events
match those used by RjDj. Scene types that re-
quire specific sensors and events will enable them
by default, RjDj scenes for example always receive
#touch and #accelerometer events.

Since some sensors use additional resources
when enabled, they must be turned on by the
patch or scene that uses them by sending a control
message to the #pdparty send name, ie:

#pdparty loc 1 ; enable gps loc events

#pdparty loc accuracy 10m ; accuracy

Additionally, PdParty provides access to
timestamp generation sent to the #timestamp re-
ceiver, manual record cueing, and opening a local
or online URL through messages sent to #pdparty.

Furthermore, [key] events work with an ex-
ternal bluetooth or USB keyboard[ˆkey]. [keyup]
and [keyname], however, are not supported as
there is currently no official way to intercept raw
key events in iOS.

3.2.6 Game Controllers

Compatible iOS MiFi game controllers can be
read in PdParty and are hot-pluggable. Controller
events are sent to the \#controller receive name
and iOS supports up to 4 simultaneous controllers.

3.2.7 MIDI

MIDI is supported on iOS via either USB or over
Wifi using Network MIDI with a computer run-
ning macOS. PdParty detects hot-plugged devices
and automatically enables sending and receiving
MIDI messages. All Pure Data MIDI objects are
supported ([notein], [ctlout], etc).

3.2.8 OSC

PdParty sends and receives OSC (Open Sound
Control) messages internally between the libpd
instance and a built-in OSC server using liblo,
an open-source C library for the OSC proto-
col. Messages can be received in Pd patches us-
ing the #osc-in receive name and sent to the
#osc-out send name. Message parsing and for-
matting are provided through the [oscparse] and

[oscformat] objects which are part of Pure Data
vanilla versions 0.46+.

If enabled, all PdParty events can be streamed
over OSC including Pd prints, eg. #touch events
are sent to the /pdparty/touch address. This al-
lows development and debugging of patches and
scenes in desktop Pure Data using events streamed
from PdParty running on a mobile device.

3.2.9 Browser

Figure 7: PdParty browser on iPhone

Patches and scenes are managed in PdParty
via a standard “drill-down” file browser which dis-
plays files and folders. Additionally, common edit-
ing controls are supported including delete, re-
name, move, and copy. Selecting a patch or scene
will open it in a patch view. Also .pd patch files
and .zip archives are affiliated with PdParty and
can be copied and opened from other applications
including Mail and DropBox.

3.2.10 Web Server

Patches and scenes can be loaded onto PdParty
either using iTunes File Sharing through iTunes
or over a local network using the built-in Web-
DAV web server. The server allows for full access
to the PdParty Documents folder and can be en-
abled from the start screen which also displays the
server IP and .local address.

Figure 8: Connecting to the PdParty WebDAV
server in macOS Finder

A connection can be made using a file transfer
program such as FileZilla or Cyberduck as well as
from operating system file managers that support
WebDAV including macOS Finder and Gnome
Nautilus. Working in this manner allows for live,
direct access to the patch files on the device from
desktop Pure Data.

3.2.11 Lib Folder

PdParty ships with a default “lib” folder which
contains PdParty’s required abstractions, allow-
ing for the bundled patches to be upgraded or re-
placed by the user. Similarly, any subfolders are
automatically added to the libpd search path when
opening a patch or scene, so it can be used as a
central place for abstraction libraries. If the folder
or any required abstractions are missing, PdParty
falls back to its own internal copy.

3.2.12 App Settings

Important PdParty application settings control
behavior, OSC event forwarding, audio latency,
and default folder copying. PdParty can be al-
lowed to run in the background and configured to
disable the lock screen from appearing. OSC event
types can be individually enabled for automatic
event forwarding if the OSC server is running. The
audio latency can be chosen automatically or set
manually by buffer size (64-2048). Last, the con-
tents of the lib, samples, and tests folders can be
recursively overwritten by their default files.

3.3 User Guide & Composer Pack

Usage and patching information is detailed in the
online PdParty User Guide which includes notes
on all event send & receive formats as well as OSC
addresses. A composer pack is also available via
.zip file which includes notes, scene type templates,

and OSC communication patches for desktop Pure
Data.

3.4 Development Timeline

The first major alpha version, 0.3.0, was fin-
ished in March 2013 and featured native emu-
lation of all built-in Pure Data GUI objects, a
patch browser, MIDI support, OSC communica-
tion, and a web server for on-device patch man-
agement. In September 2013, 0.4.0 alpha was re-
leased to testers using the TestFlight framework
and included a settings interface, on-screen con-
trols, RjDj & PdDroidParty scene type support,
and PdDroidParty custom UI emulation. At the
time of writing, PdParty is at version 0.5.6-beta
and includes a user guide, composer pack, UI
icons, demo scenes, full iOS sensor event support,
game controller support, and various bug fixes &
improvements.

4 robotcowboy with PdParty

With PdParty, the author now has a stable low
latency mobile/wearable platform with a touch-
screen, accelerometer, WiFi networking, and USB
MIDI/audio. Here is a belt-based wearable setup
using an iPhone, Camera Connection Kit, powered
USB hub, Roland Edirol UA-25 USB audio inter-
face, and a Behringer direct box (the latter two
are built in the case on the left):

Figure 9: Prototype robotcowboy belt with
iPhone 2016

5 Future

Although PdParty is largely feature complete,
new developments are always possible since “soft-
ware is never finished.”

5.1 Multiple Patch Views

Currently, PdParty’s patch view only displays GUI
objects loaded from the main scene patch. It
may be useful to be able to display multiple GUI
patches in either separate tabs or from within a
temporary modal patch view. One possible use

case could be to open a mixer view from a run-
ning patch.

5.2 Link

Ableton Link3 is a cross-device protocol for tempo
synchronization which was released as open-source
for iOS and desktop computers in 2016. Although
not a new concept, Ableton’s clout as a music
software company will most probably push Link’s
adoption on many music environments and plat-
forms in the future. PdParty could integrate Pe-
ter Brinkmann’s abl_link~ external to send and
receive Link messages within patches. [7]

5.3 AudioBus

AudioBus4 is an iOS library for routing audio be-
tween multiple apps running on the same device.
As PdParty is a general purpose Pure Data DSP
platform, it is a natural fit as a node within the
overall ecosystem of iOS audio applications. Au-
dioBus support was not one of PdParty’s main re-
quirements but could be added in the future.

5.4 libpdparty

PdDroidParty can both run scenes as well as be
used for creating new Android applications. The
core of PdParty (libpd, GUI emulation, event han-
dling, etc) could be similarly spun off as a sepa-
rate Objective-C library for use when creating cus-
tom PdParty applications. Notedly, libpd-based
MobMuPlat (Mobile Music Platform) by Daniel
Iglesia uses the PdParty GUI emulation classes on
iOS [8].

5.5 Patch Editing

PdParty is focused on the running of Pure Data
patches and scenes but does not have the capabil-
ity to edit them. If libpd adds a standard API for
communication with the Pure Data GUI, an edit-
ing UI could be added for mobile patch creation.
Some degree of interaction design and research,
however, will be required for adapting a desktop
UI idiom to mobile devices.

6 Conclusion

After years of on and off development, the au-
thor is happy to finally release PdParty to the Pure
Data community. It is hoped PdParty will be a

useful tool for musicians seeking alternate perfor-
mance paradigms on an embedded device they al-
ready own. With a growing libpd-based mobile
ecosystem, the future of computer music is in your
pocket.

Links

https://github.com/danomatika/PdParty

Acknowledgments

The development of ofxPd was supported by the
CMU Frank-Ratchye Studio for Creative Inquiry
and director Golan Levin. PdParty is directly in-
fluenced by Reality Jockey’s RjDj and Chris Mc-
Cormick’s PdDroidParty. Frank Barknecht & Joe
White provided insight into the RjDJ scene for-
mat. Thanks to Miller Puckette and the Pure Data
community for Pd itself.

References

[1] G. Geiger, “PDa: Real Time Signal Processing
and Sound Generation on Handheld Devices,” in
International computer music conference, 2003.

[2] P. Kirn, Create Digital Music, Oct-2008 [On-
line]. Available: http://cdm.link/2008/10/rjdj-
responsive-interactive-music-on-iphone-now-
available-free-3

[3] P. Brinkmann, P. Kirn, R. Lawler, C. Mc-
Cormick, M. Roth, and H.-C. Steiner, “Embedding
Pure Data with libpd,” in Pure Data Convention
Weimar 2011, 2011.

[4] D. Wilcox, “robotcowboy: A One Man Band
Musical Cyborg,” Master’s thesis, Chalmers Uni-
versity of Technology, 2007.

[5] D. Wilcox, “ofxPd: a Pure Data addon for
OpenFrameworks using libpd.” [Online]. Avail-
able: https://github.com/danomatika/ofxPd

[6] C. McCormick, “DroidParty.” [Online]. Avail-
able: http://www.droidparty.net

[7] “Ableton Link integration for Pd.” [Online].
Available: https://github.com/libpd/pd-for-ios/

3https://www.ableton.com/en/link
4https://audiob.us

https://github.com/danomatika/PdParty
%20http://cdm.link/2008/10/rjdj-responsive-interactive-music-on-iphone-now-available-free-3
%20http://cdm.link/2008/10/rjdj-responsive-interactive-music-on-iphone-now-available-free-3
%20http://cdm.link/2008/10/rjdj-responsive-interactive-music-on-iphone-now-available-free-3
https://github.com/danomatika/ofxPd
http://www.droidparty.net
https://github.com/libpd/pd-for-ios/tree/master/abl_link
https://github.com/libpd/pd-for-ios/tree/master/abl_link
https://audiob.us

tree/master/abl_link

[8] D. Iglesia, “MobMuPlat.” [Online]. Available:
http://danieliglesia.com/mobmuplat

http://danieliglesia.com/mobmuplat

	Introduction
	Background
	PdParty
	Focus
	Features
	libpd
	GUI Emulation
	Scene Types
	Onscreen Controls
	Sensor and Control Events
	Game Controllers
	MIDI
	OSC
	Browser
	Web Server
	Lib Folder
	App Settings

	User Guide & Composer Pack
	Development Timeline

	robotcowboy with PdParty
	Future
	Multiple Patch Views
	Link
	AudioBus
	libpdparty
	Patch Editing

	Conclusion
	Links
	Acknowledgments
	References

