
PdParty

An iOS Computer Music Platform using libpd

Dan Wilcox

University of Denver

November 18th, 2016



Figure 1: PdParty logo



Background



2003: PD-Anywhere by Günter Geiger

Pure Data for DSP on early mobile devices:

PDA
PocketPC
iPod
Nokia meamo
embedded: gumstix, triton, etc

Custom version of the Pure Data core

Integer-only math: support for hardware without floating point



2008: RjDj by Reality Jockey

Figure 2: RjDj website, circa 2010



2008: RjDj by Reality Jockey

iOS app using customwrapper for Pure Data core

User-friendly scenes with bundled content

Access to built-in smart phone sensor events

RjDj “songs” are live Pure Data patches

Beyond simple playback
Interactive & generative audio

Platform for both listeners and computer musicians



2010: libpd by Peter Brinkmann, et al

Library wrapper for the Pure Data core

Developed with experience from RjDj

Base platform for Pure Data as a portable, embeddable DSP library



2010: RjDj Sceneplayer by Peter Brinkmann

Figure 3: RjDj Sceneplayer logo



robotcowboy

Figure 4: robotcowboy @NewMedia Meeting in Norkörping SE 2009



robotcowboy

Human-computer wearable performance project

Embodiment of computational sound

Original 2006-2007 MS thesis project using:

Industrial wearable computer: Xybernaut MA V (P3 500 Mhz 256 MB)
GNU/Linux, Pure Data, & custom software
External stereo USB sound & MIDI interfaces
HID input: gamepads

Roadworthy focus onmobility, plug-in-play, reliability, & low cost

Compositional approach: life input/generation and room for failure



robotcowboy

Figure 5: robotcowboy hardware 2007: Roland UA-25 audio interface, Xybernaut
MA-V wearable computer, USB hub



PdParty



Focus

Main Focus of PdParty

Easy deployment and playback of Pure Data patches



Focus

Figure 6: Demo patch in Pure Data onmacOS



Focus

Figure 7: Demo patch in PdParty on iPhone



Focus

WYSIWYG patch UI experience between desktop &mobile usage

Accurate emulation of all aspects of the built-in GUI objects:

number, symbol, comment, number2, bang,
toggle, sliders, radios, vumeter, canvas



Focus

Like Pure Data itself, PdParty is meant as a general purpose platform

Attempts to stick with Pd idioms as much as possible

Usage should be straight forward and “plug and play”



Features

libpd core
Native GUI object emulation
Scene types
Onscreen controls
Sensor events
Game controller support
MIDI
OSC network communication
Built-in web server



Features

Universal app: iPhone & iPad

Released as open source on Github



libpd

Built around libpd: wrapper for Pd vanilla DSP core

Uses libpd’s Obj-C wrapper and AudioUnit

libpd is vanilla -> patches created in vanilla will work directly in
libpd/PdParty

Included externals:

vanilla extra: [expr~], [sigmund], etc
ggee: [getdir], [stripdir]
mrpeach: [midifile]

Note: Apple does not allow dynamic object loading on iOS



GUI Emulation

Pd vanilla objects are recreated in Obj-C using:

AppKit input events: touchDown, touchMoved, etc
CoreGraphics drawing routines: fill/stroke, line, rectangle, circle



GUI Emulation

When PdParty loads a scene or patch:

main patch is parsed separately
supported objects identified by name: ie. “tgl”
objects with send / receive names are added to patch view
screen orientation interpreted from patch canvas aspect ratio
object placement is scaled to approximate original patch position



Gui Emulation

Patching a UI for PdParty follows Model-View-Controller pattern:

core patch logic: model
GUI objects: view & controller

Communication via send / receive names



Gui Emulation

Figure 8: PdDroidParty GUI concept



Gui Emulation

Overall approach adapted from PdDroidParty: patch loading & emulation

PdDroidParty object support:

display, knob, loadsave,menubang, numberbox,
ribbon, taplist, touch,wordbutton



Scene Types

Plain *.pd Pd patches (of course)

Scene: a folder with a specific layout that is treated as an encapsulated
bundle

Scene folder types:

RjDj: end with “.rj”, contain a “_main.pd” patch, optional metadata
“Info.plist” file & background/thumbnail images
PdDroidParty: contain main “droidparty_main.pd” and optional
background image & font files
PdParty: contain main “_main.pd” patch and optional metadata
“info.json” file and thumbnail image



Scene Types

Scene types specify attributes and sensor access

RjDj: locked to portrait on iPhone, touch events normalized to 0-320,
additional sensors accessed via rj sensor abstractions, 22.5k sample
rate
PdDroidParty: locked to landscape, no touch or accelerometer events,
additional sensors accessed via the [droidsystem] object
PdParty: infer orientation from patch aspect ratio, normalize touch
events to 0-1, support all sensor types



Onscreen Controls

Figure 9: Onscreen control popover on iPhone



Onscreen Controls

Inspired by original RjDj app

Appear either in a popover or on-scene view for RjDj scenes

Controls:

DSP play/pause
record
microphone level
scene restart
open the console view (optional)

Patches must use the rjlib [soundinput]/[soundoutput] abstraction
wrappers for [adc]/[dac] to enable microphone input level and record
controls



Sensor and Control Events

Figure 10: PdParty event receivers



Sensor and Control Events

Supported sensors:

touch screen
accelerometer
gyroscope
magnetometer
GPS
compass



Sensor and Control Events

Sensor events are sent to special receive names starting with a ‘#’:
#touch, #accelerate, #gyro, #magnet, #loc, #compass

Some sensors are enabled/disabled based on the scene type, ie. RjDj
scenes always receive #touch & #accelerate



Sensor and Control Events

Some sensors use extra resources & can be enabled via a control message
to #pdparty receive name:

#pdparty loc 1 ; enable gps loc events
#pdparty loc accuracy 10m ; accuracy



Sensor and Control Events

Additional control messages via #pdparty:

timestamp generation sent to the #timestamp receiver
manual record cueing
open a local or online URL

[key] events work via external USB / Bluetooth keyboards

[keyup] and [keyname] do not work, no way to grab raw iOS key events



Game Controllers

iOS MiFi game controllers are supported and can be hot-plugged

Controller events are sent to the #controller receive name

When plugged in, controller index LEDs are set matching the name of the
controller: ie. controller “gc1” is LED 1

iOS supports up to 4 simultaneous controllers



MIDI

MIDI I/O on iOS is supported for USB-compliant MIDI devices

Also works over Wifi using Network MIDI with a computer running macOS

Devices can be hot-plugged and are automatically connected

All Pure Data MIDI objects are supported: [notein], [ctlout], etc



OSC

OSC (Open Sound Control) is supported via a built-in server using the liblo
C library

OSCmessages are passed between the libpd instance and the liblo server
via the #osc-in and #osc-out send/receive names

Parsing and formatting are provided by the Pd vanilla [oscparse] and
[oscformat] objects



OSC

PdParty events can be forwarded over OSC:

#touch events are sent to the /pdparty/touch OSC address



Browser

Figure 11: PdParty browser on iPhone



Browsers

Patches & scenes are managed via a standard iOS “drill-down” file browser

Common editing controls are provided: delete, rename, move, copy

Selecting a scene or patch opens it in a patch view

The “.pd” and “.zip” file types are associated with PdParty and can be
copied or opened from other applications such as Mail or DropBox



Web Server

Patches & scenes can be loaded onto PdParty using iTunes File Sharing

PdParty includes a built-in WebDAV server which provides full access to the
app Documents folder

Enabled from start screen and displays server IP and .local MDNS address



Web Server

Figure 12: Connecting to the PdParty WebDAV server in macOS Finder



Web Server

Connect to the server with common FTP programs:

FileZilla
Cyberduck

Or via OS file managers that support WebDAV including:

macOS Finder
Gnome Nautilus

Allows for live, direct access to patching “on the device” from the desktop!



Lib Folder

Special folder in the main PdParty Documents folder: “lib”

Contains PdParty’s required abstractions which can be overriden or
upgraded (as per GPL)

Subfolders are automatically added to PdParty search path: global
location for abstraction libraries

PdParty falls back to internal “lib” copy if the main folder is missing



App Settings

Important settings are available in a settings view

App Behavior:

run in the background
disable lock screen

OSC Event Forwarding

Audio Latency:

automatic
manual buffer size: 64 - 2048

Copy Default Folders: lib, samples, tests



User Guide & Composer Pack

Online user guide: http://danomatika.com/code/pdparty/guide

Composer pack zip file which includes:

notes
scene type templates
OSC communication patches for desktop

http://danomatika.com/code/pdparty/guide


Development Timeline

Mar 2013 0.3.0: first major alpha
Sep 2013 0.4.0: initial beta on TestFlight framework
Oct 2016 0.5.6: first release candidate
Nov 2016 1.0.0: initial release on iOS App Store



robotcowboy with PdParty

With PdParty and iOS, robotcowboy now has:

stable, low latency mobile/wearable platform
touch screen
accelerometer
WiFi networking
USB MIDI/audio

Initial wearable setup: iPhone, Camera Connection Kit (USB dongle),
powered USB hub, Roland UA-25 USB audio interface, Behringer direct box



robotcowboy with PdParty

Figure 13: robotcowboy belt with iPhone 2016



Future



Never Finished

PdParty is currently feature complete… but software is “never finished.”



Multiple Patch Views

PdParty’s patch view only displays GUI objects loaded from single, main
patch

Add ability to display other GUI patches in separate tabs or fromwithin
temporary modal patch view

Use case: open a pop upmixer view from amain patch



Link

As strong as its weakest link

Ableton Link: cross-device protcol for tempo synchronization

Released as open-source for iOS and desktop computers in 2016

Not a new concept, but pushed by Ableton’s considerable clout in the DAW
scene

Add Peter Brinkmann’s [abl_link~] external to PdParty with a possible UI
control view



AudioBus

AudioBus: iOS library for routing audio betweenmultiple apps running on
the same device

Perfect fit for PdParty as a “general purpose DSP” platform

Add AudioBus linking so PdParty can act as a node within iOS audio
ecosystem



libpdparty

PdDroidParty is both an app for running scenes as well as a wrapper for
creating self-contained apps

Core of PdParty (libpd, GUI emulation, event handling) could be spun off as
a separate Obj-C library

Allow for creation of custom PdParty-based applications

Notedly: Daniel Iglesia’s MoMuPlat (Mobile Music Platform) uses PdParty
GUI emulation classes on iOS



Patch Editing

PdParty is focused on running Pure Data patches and scenes

No capability to create or edit patches

Could add editing controls and general canvas rendering if/when a GUI
communication API is added to libpd

Note: will require research and effort in adapting desktopmetaphors to
mobile



Conclusion



It’s Alive!

It’s alive! It’s alive!

Finally released after years of on and off development

Hopefully PdParty will be a:

useful tool for the Pd Community
platform for alternate performance paradigms



Links

PdParty website: http://danomatika.com/code/pdparty

Github: http://github.com/danomatika/PdParty

http://danomatika.com/code/pdparty
http://github.com/danomatika/PdParty


Mobile Music Workshop

Want to knowmore?

12:10 - 13:30
Saturday Nov 19th
NYU, Room 320

PdDroidParty Chris McCormick (Android)

MobMuPlat Daniel Iglesia (iOS & Android)

PdParty DanWilcox (iOS)



The Future

With a growing libpd-basedmobile ecosystem, the future of computer
music is in your pocket.



Acknowledgments

Development of ofxPd and early libpd work was supported by the CMU
Frank-Ratchye Studio for Creative Inquiry and director Golan Levin

PdParty is directly influenced by Reality Jockey’s RjDj and Chris
McCormick’s DroidParty

Frank Barknecht & Joe White provided insight into the RjDJ scene format

Thanks to Miller Puckette and the Pure Data community for Pd itself



Thank You


	Background
	PdParty
	Future
	Conclusion
	Thank You

