
Master of Science Thesis in Art and Technology

robotcowboy: A One-Man Band
Musical Cyborg
Daniel Wilcox
Göteborg, Sweden 2007

REPORT NO. 2007:70

robotcowboy:
A One-Man Band Musical Cyborg

DANIEL WILCOX

IT UNIVERSITY OF GÖTEBORG
GÖTEBORG UNIVERSITY AND CHALMERS UNIVERSITY OF

TECHNOLOGY
Göteborg, Sweden 2007

robotcowboy: A One-Man Band Musical Cyborg
DANIEL WILCOX

c©DANIEL WILCOX, 2007.

Report No 2007:70
ISSN: 1651-4769
IT University of Göteborg
Göteborg University and Chalmers University of Technology
P O Box 8718
SE — 402 75 Göteborg
Sweden
Telephone + 46 (0)31-772 4895

Department of Applied Information Technology
Göteborg, Sweden 2007

robotcowboy:
A One-Man Band Musical Cyborg

Dan Wilcox
danomatika@gmail.com
www.robotcowboy.com

“Why, he’s a reg’lar musicker!” said Button-Bright.

“What’s a musicker?” asked Dorothy.

“Him!” said the boy.

Hearing this, the fat man sat up a little stiffer than before, as if he had
received a compliment, and still came the sounds:

Tiddle-widdle-iddle, oom pom-pom,
Oom pom-pom, oom—

“Stop it!” cried the shaggy man, earnestly. “Stop that dreadful noise.”

The fat man looked at him sadly and began his reply. When he spoke the
music changed and the words seemed to accompany the notes. He said —
or rather sang:

It isn’t a noise that you hear,
But Music, harmonic and clear.
My breath makes me play
Like an organ, all day—
That bass note is in my left ear.

Frank Baum, The Road to Oz (1909)

Abstract

robotcowboy is a performance project consisting of a wearable com-
puter system and various peripheral devices which enable a single
performer to become a mobile, technological “one-man band” free to
roam the stage, the street, and the world. It is both an homage to the
“one-man band” tradition and an exploration into a post-digital re-
newal of embodiment and physical instrumentality in electronic musi-
cal instruments. The system is built with low-cost in mind and utilizes
readily-available hardware and free, open source software in order to
make the concept feasible to the everyday computer performer who
wishes to step out from behind his screen. It is hoped that the concept
of “wearable music computer” can one day become as ubiquitous as
that of “laptop musician” in a return to the fragility and excitement
of live music.

Keywords: wearable computing, mobile music, performance art

i

Acknowledgements

This masters thesis was developed during the spring of 2007 at the Art and
Technology Program, IT University in Göteborg, Sweden and the text written
in June of the same year.

I would like to acknowledge and thank my supervisors Dr. Mats Nordahl and
Palle Dahlstedt for their guidance throughout the undertaking of this work.

Thanks to Oscar Ramos, my partner in crime whose help and insight were
invaluable during many performances where experimental equipment and
software did not perform as expected and to Christian Pallin of Koloni fame
for facilitating numerous opportunities to perform for the Göteborg experi-
mental music scene.

Thanks to my friends and fellow classmates at 141:an for kitchen coffee chats,
Friday dance parties, Sunday dinners (and laundry, Christine), late night
soldering sessions, Tuesday basketball games, and all the rest that made
our Swedish experience a memorable part of life: Salvador, Olle, Michael,
Sebastian, Jeanette, Alma, Daniel, Hamlet, Eva, Christine, Fanouris, Freddy,
Alejo, Anand, Pilly, Gesa, Cui Lei, Li Jing, Pong Pan, Yoshi, and the whole
gang.

Thanks to Joakim for keeping the building together as it fell apart in slow
motion and for making time-lapse videos of the process in action.

... and thank you DEVO for the truth about de-evolution ...

Last and first of all, thanks to Smith and Jackalyn Wilcox, my parents,
for their generous support for my eccentric undertakings in a land far from
Huntsville, Alabama. Mom and Dad, you may not understand what I am
doing or why, but you have always encouraged be to do the best that I can,
and I love you for it. One could not ask for better parents.

ii

Contents

1 Introduction 1

1.1 Definitions . 3

2 Motivation 5

2.1 A Critical Survey on the Nature of Post-Digital Instruments . 6

2.1.1 The Post-Digital Aesthetic 6

2.1.2 32kg: Performance Systems for a Post-Digital Age . . . 6

2.1.3 Some Remarks on Musical Instrument Design at STEIM 7

2.1.4 Making Motion Musical 8

2.1.5 The Art of Interaction 9

2.1.6 Digital Instruments and Players: Part I — Efficiency
and Apprenticeship . 10

2.1.7 Theses on liveness . 11

3 Background 15

3.1 The One-Man Band . 15

3.1.1 Traditional One-Man Band Instruments 16

3.1.2 Unique Traditional One-Man Bands 18

3.1.3 Modern One-Man Bands 22

3.1.4 Relationship Between Instrument and Musician 26

3.1.5 The One-man Band As A Cyborg Entity 27

iii

3.2 Relevant Previous Works . 28

3.2.1 The Soundwalk . 28

3.2.2 Exceptional Body Interfaces 29

3.2.3 Wearable Interfaces . 31

3.2.4 Tangible Performances 34

4 Experimental Performances 36

4.1 robotcowboy helmet prototype 37

4.2 robotcowboy button box . 40

5 robotcowboy unit 43

5.1 Design Requirements . 43

5.2 Hardware Implementation . 44

5.2.1 Computer . 46

5.2.2 Soundcard . 48

5.2.3 Input Devices . 50

5.3 Software Implementation . 54

5.3.1 Operating System . 54

5.3.2 Sound Generation and Processing Environment 55

5.3.3 unit-daemon . 57

5.3.4 Interaction and Recording Affordances 59

5.4 Velocipede: A Prototype Performance Mapping 59

iv

6 Results 68

6.1 Mobility . 68

6.2 Performance . 68

6.3 Instrumentality . 69

6.4 Improvisation . 69

6.5 Reliability . 69

6.6 Low Cost . 70

7 Future Work 71

8 Conclusions 73

A unit-daemon Source Code 81

v

Fig. 1: The author, a musical cyborg wearing the robotcowboy system

1 Introduction

As the mobility and power of the computer continues to expand, so does its
role in live music. Ever since electronic gestural controllers and synthesizers
have been pioneered for the stage during the 1980’s, computers and sensor
technologies have expanded into the arena of live musical performance. This
thesis proposes an investigation into the use of the wearable computer in this
setting through the development of a human-computer mobile performance
project entitled “robotcowboy”. robotcowboy [sic] consists of a “one-man
band” wearable computer system dubbed “unit” composed of a mobile com-
puter and various input devices such as game and midi controllers.

The goal of such an exploration is to prompt discussion and development
into the nature of the “musical performance computer”. Within the last 10
years the availability of cheap yet computationally-powerful portable ”lap-
top” computers has led to their prominence in electronic, DJ (disc-jockey),

1

and even pop/rock musical settings, yet their use has been criticised due, in
general, to the lack of physical action, interaction, and mobility of laptop
musicians on stage. Although the vast majority of electronic music being
made at the time of this thesis is performed using these machines, there are
notable projects and musicians who have set the stage for gestural electronic
instruments that offer an embodiment of sound and instrumentality. The
post-digital aesthetic of a return to the body is reemphasizing the role of the
musicians movement and physical effort in the live performance arena.

The one-man band is a tradition of pragmatic creativity and independence
from musical norms. The iconic man with a bass drum on his back, cymbals
between his knees, drum beaters attached to his feet, and various hand and
mouth instruments is at once both comical and impressive1 — a humorous
picture of a determined individual. Most traditional one-man band systems
can be seen as intimate musical cyborg apparatuses, custom made for the
needs of the performer, which were often taken out into the public on street
corners and at musical events. This tradition continues as new technology is
being adapted by performers to allow gestural and musical control beyond
the limits of physical instrumentality.

The project presented in this thesis represents the struggle of one live
performer applying his experience and musical requirements for intuitive ex-
pression through a technological one-man band system: the robotcowboy
unit. During the course of the robotcowboy project several experimental
systems were tested and the results encouraged the design goals of the final
prototype. Detailed descriptions of the problems encountered and the con-
ceptual, technical, and practical approaches to their solution are included.
It is the hope of the author that those who wish to utilize the power of the
computer in live music while avoiding its performative limitations will find
this work useful.

1A tap drummer, see Figure 4

2

1.1 Definitions

This thesis presents several topics using specific semantics and certain words
are best defined beforehand:

• modern: the (post-)digital age at the time of this thesis, circa June
2007; a time when Internet technology and wireless connectivity are
becoming ubiquitous, mobile devices have become “do-it-all” minia-
ture computers, and the use of laptop computers within live music has
occurred for over 10 years

• traditional: being of before the modern era at the time of this thesis;
usually used to refer to instruments and music produced using pre-
digital technologies

• post-digital: an aesthetic created through the use of the errors and
“failures” of digital technology and forcing such systems to do what
they were not originally intended2

• wearable computer: a mobile computing system worn on the body;
it is important to note that a stand-alone computational system, such
as a modern “do-it-all” cellphone, is not considered “wearable” within
this thesis as it is not integrated into the body, but designed to be
carried and manipulated by the hands

• one-man band: a single musician playing multiple instruments at the
same time; obviously, there exist “one-woman bands” and both genders
are inferred for the sake of simplicity

• cyborg: “cybernetic organism, the melding of the organic and the ma-
chinic, or the engineering of a union between separate organic systems.”
The Cyborg Handbook [19]

• laptop computer: a portable computer small enough to use on one’s
lap, commonly referred to as a “laptop”; at the time of this thesis, such
computers are comparable in computing power to desktop computers

• MIDI: the Musican Instrument Digital Interface; since 1984, this mu-
sical protocol is the current standard protocol for controlling digital
instruments through discrete events

2A term coined by Kim Cascone in “The Aesthetics of Failure: ’Post-Digital’ Tendencies
in Contemporary Computer Music” [9]

3

• OSC: Open Sound Control; an alternative to MIDI with greater speed,
increased resolution, and flexible addressing over an Ethernet connec-
tion

• GNU/Linux: a free computer operating system consisting of the
Linux kernel and the GNU software suite sponsored by the Free Soft-
ware Foundation3

• daemon: a program that runs in the background handling continuous
or periodic system functions such as power or network management

• MAX, MAX/MSP, Pure Data: graphical, modular, object-oriented
software patching environments for realtime sound composition, pro-
cessing, and generation (see also [36] and [37])

3http://www.fsf.org

4

2 Motivation

The one-man band system in this thesis was developed in order to discover
new possibilities of the ‘musical cyborg’ — the modern combination of man
and machine in order to produce live music. His tools include electronics, a
computer, and computer software making him a one-man band of the new
era where the determination and ingenuity of the tradition of the one-man
band are combined with the power of digital technology.

As computing devices become more mobile, computer music should fol-
low. Currently, the vast majority of live computer-generated or computer-
processed music is done on stationary machines with the performer sitting
or standing behind a glowing screen — the ‘mobility’ of the laptop is only
between gigs, not on stage. This project proposes the use of wearable com-
puters in live computer music so as to give the musical cyborg legs. The
resulting ‘mobile musical cyborg’ can now run, jump, dance, and well ...
rock. Laptops are ‘general computing devices’ and, as such, are not physi-
cally designed for active use on stage outside of sitting on a table.

In the authors experience, the vast majority of audience members at
live ‘laptop music’ events desire some sort of interaction with or from the
performer. The electric guitar, for instance is very well suited for this task
in that the player can look at the audience, sing, and move about, tethered
by a single cord. On the other hand, the general purpose computing device
is poorly suited for this interaction since the performer rarely looks up from
their glowing screen and they are physically incapable of moving from behind
it. This thesis project proposes a screen-less, wire-less wearable computer
performer who is free to move about the stage, whose control of sound is more
tangible, and who is able to enjoy the spectacle that is live performance.

The performance art itself in the art of live music should not be subju-
gated by the interface of a mass-produced commercial item. The traditional
one-man band strives to create a unique experience for both performer and
audience by modifying readymades and custom-building instruments. Why
should the one-man band musical cyborg not do the same and “realise a
unique and playful thought”4?

4See the quote beginning Section 3.1

5

2.1 A Critical Survey on the Nature of Post-Digital Instru-
ments

Many new instruments are being invented. Too little striking
music is being made with them. Sergi Jordá [25]

In order to place this thesis and its motivation within a critical and the-
oretical framework, it is important to review a set of critical texts on the
nature of electronic instruments in the current “post-digital” era. Collec-
tively, they present a context in which to place works mentioned within the
Background in Section 3, offer a critical analysis of past and current live
instruments, and argue towards a definition of the characterstics needed for
an electronic instrument to be successful in a live environment.

2.1.1 The Post-Digital Aesthetic

Kim Cascone’s The Aesthetics of Failure: ’Post-Digital’ Tendencies in Con-
temporary Computer Music [9] begins with a quote by noted computer sci-
entist Nicholas Negroponte: “The digital revolution is over” (1998). Cascone
coins the term “post-digital” to refer to an aesthetic in a world where digital
technology has lost its utopian promise through becoming commonplace. Its
“failures” are no longer ignored but highlighted and manipulated through
sampling errors, digital distortion, the glitch — new background sounds ala
Luigi Russolo, musique concrète, and John Cage. Computers have become
the primary tools for electronic music which is no longer valued for being
merely “digital”, it’s message shifted from the medium to the tools of cre-
ation.

2.1.2 32kg: Performance Systems for a Post-Digital Age

In 32kg: Performance Systems for a Post-Digital Age [40], Richards’ notes
the post-digital frustration with the black and white logic of 1 and 0 in a world
of human experience in constant transition. There is a return to analog for it’s
“softer” nature and infinite subtlety, a renewed interest in the soldering iron
and hardware hacking in the likes of David Tudor and Gordon Mumma to
explore the content of the device through its native interaction. This process

6

of “composing within the electronics” is seen in software tools such as the
patching and modular abstraction of Max/MSP and Pure Data. As opposed
to the antiseptic newness of the consumer-bought digital, the post-digital
is an aesthetic of adaptation and reuse where Erikki Huhtamo’s “familiar
aliens” [21], popular machines and symbols that have become part of cultural
heritage, appear in music in the form of sampling and chip-tunes. It is a
return to the personalized and self-made instrument through “punktronics”
— a backlash against the “iPod future” and commercial ready-mades:

These are electronic instruments and working methods that are
directly opposed to those of a mass produced digital culture and
may include some of the following characteristics: designer trash
(deliberately made to look beaten-up or broken), ugly, cheap, heavy,
hand-made, designed to be handled or to come in contact with the
body, ready-mades, hacked, bent, feedback and kitsch. [40]

Richards further argues that the back-lash of the post-digital is not lim-
ited to the visual aesthetic of musical instruments but also to their interface
design. Many digital input devices which are used for instrumental control
are only able to accept a fraction of the gestural range of the human body.
Unsatisfied by the micro-gestures of the laptop touchpad, post-digital in-
strument makers seek to provide interfaces more suitable to human gesure
through the use of large knobs and sliders, body contacts, and exposed wires.
It is a return to ergonomics and the biological reality of the body.

2.1.3 Some Remarks on Musical Instrument Design at STEIM

Despite the disembodiment of most current digital instruments, historically,
there has been an interest in the body in digital instrument design. STEIM,
the Studio for Electro-Instrumental Music in Amsterdam, is a research orga-
nization that pursued touch and embodiment in its instruments throughout a
MIDI-revolution that further abstracted the musicians body. In 1991’s Some
Remarks on Musical Instrument Design at STEIM [41] Joel Ryan states
that with the availability of digital musical devices in the period following
the mid-1980’s, the distancing of the composer though formalized musical
processes shifted toward the composer/performer and a “quest for immedi-
acy in music”. This immediacy is almost effortlessly achieved though digital

7

instruments, yet it is this virtue of effortlessness, the promise of the ‘digital-
myth’, that works against the actions involved in playing a traditional instru-
ment. Ryan notes that physical effort is one of the functional requirements
of traditional instruments which were developed and expanded with musical
possibility, not required effort, in mind. In fact the progression of physical
instruments moves toward an increase of required effort and thus it can be
said that effort is closely arranged with expression in that more practice and
muscular ability are required to draw out these expanded possibilities. Ryan
argues that this inherent design principle is important for digital instruments
in that the required physical actions and effort of the performance interface
help bring to life the underlying musical processes, much like the physical
sounding bodies of traditional instruments:

In fact the physicality of the performance interface helps give
definition to the modeling process itself. The physical relation to
a model stimulates the imagination and enables the elaboration of
the model using spatial and physical metaphors. The image with
which the artist works to realize his or her idea is no longer a
phantom, it can be touched, navigated and negotiated with. [41]

2.1.4 Making Motion Musical

The 1995 Making Motion Musical [45] by Todd Winkler discusses design
principles for digital instruments which transform physical motion into sound.
This is an important compositional problem since there is already a natural
precedent for gestural mappings and their associated musical content within
traditional instruments — slight finger tapping on a cymbal, a dramatic foot
kick of the bass drum, a rolling piano arpeggio. Winkler observes that the
physical constraints of both instrument and performer define the instrument’s
usage:

Physical constraints produce unique timberal characteristics, and
suggest musical material that will be idiomatic or appropriate for
a particular instrument’s playing technique. These reflect the
weight, force, pressure, speed, and range used to produce sound.
In turn, the sound reflects, in some way, the effort or energy used
to create it. The fact that brass tones add upper partials as they
grow louder is a classic example. [45]

8

These associations are what come to mind when one thinks of what makes
an instrument an instrument and Winkler points out that electronic com-
posers now have the ability to map any gesture to any musical parameter.
This fact is a double-edged sword in that with freedom comes a greater chal-
lenge in defining meaningful and useful mappings in order to produce a more
effective controller — creating an instrument. Opposite relations can be used
to great effect, for instance, but care must taken not ‘overdo it’ as simplistic
mappings can be too trivial for extensive usage.

2.1.5 The Art of Interaction

Salz’s 1997 The Art of Interaction [42] places interactive computer works
within the performance art framework: they are transient conceptual con-
structs, not static works and are performed either for or by an audience. An
interactive work is defined as an artwork that accepts action from a human
interactor and produces some sort of real world stimulus for the audience —
action results in response. Salz forwards that, like dance and musical perfor-
mance, these works are performing arts in which the artist builds a blueprint
for the performance experience using electronics and software, becoming the
composer, playwright, director, and performer in one. Live interaction and
performance is a movement away from post-modern recording/repetition and
towards immediacy. The medium of the performing arts is performance itself
— the act of performer performing for an audience where even the specta-
tors themselves play the roles of “spectator” and these live actions are, as
Goldberg defines performance art, “live art by artists” [18]:

Performance is the medium. The live performance of actions is
the stuff out of which the art is made. The audience regards the
performance as an aesthetic object in its own right. [42]

Salz also notes several pertinent aspects of interactive works. Performance
interactions, that is the interactions of the performance defined by the map-
ping of the actions to responses, are broken into two types: stage interactions
that are performed for an audience and participatory interactions in which
the audience interacts directly with the work. In either case, a contextual
environment is created around the actions of performance in that the type
of performance is not defined since many works do not sit within a specific

9

area of the performing arts, but freely combine music, dance, and live vi-
sual arts. An interactive computer work such a realtime algorithmic musical
accompaniment system can become mimetic when the the interactor, either
performer or audience, personifies the system as an interactor itself. In this
case the system becomes an instrument separate from the other performers
whereas in more participatory interactions the interactive element is integral
to the performance.

2.1.6 Digital Instruments and Players: Part I — Efficiency and Ap-
prenticeship

Sergi Jordá, co-creator of Afasia (see Section 3.1.3), critiques the status of
new musical instruments in his 2004 Digital Instruments and Players: Part I
Efficiency and Apprenticeship [25] stating that there exist few studies for the
design of such instruments — tools for playing and making music as a con-
ceptual whole. No recent electronic instrument has attained even the small
popularity of the Theremin and Ondes Martenot between the 1920’s and 50’s
and, in fact, the latest new instrument to create its own compelling sound,
music, culture, and virtuosi is not even digital or electronic: the turntable
of the 1980’s. He lists his dissatisfaction with the status of electronic instru-
ments as a lack of dedicated performers and instruments:

New instruments possibilities are endless. Anything can be done
and many experiments are being carried out. Yet, current situa-
tion and results can hardly be considered awesome.

• The list of new instrument virtuosi and/or professional mu-
sicians who use them as their main instrument is surpris-
ingly small (Michel Waisvisz, Laetitia Sonami, Nicolas Col-
lins, Atau Tanaka, Richard Boulanger).

• Being that live electronics and laptop music is so widespread
[9] it is symptomatic and frustrating that so many perform-
ers prefer to still rely on the mouse, or at the most, on
generic and dull midi fader boxes.

• Commercially available new instruments are scarce and har-
dly imaginative and ground-breaking (e.g. Korg KAOSS Pad).

• A new standard electronic instrument is yet to arrive.

10

Jordá further states that in the last 2 decades, many new musical con-
trollers have been developed that enable virtuosity and can interest novice
users, yet have not encouraged deeper exploration and creativity. For a new
instrument to be successful, it should be properly balanced to encourage use
by both professionals and novices. A simple instrument is easy to pick, but
short on musical possibility while a complex one can be too intimidating to
the beginner, alienating the user before its subtleties are explored. The pi-
ano, for example, is easy to play while offering enough possibility for long
study and mastery. A good instrument should not impose its music on the
player, it should not only play “good” music but must have a capacity for
failure, for the limitations of “bad” music offer musical freedom of choice.

2.1.7 Theses on liveness

John Croft’s 2007 Theses on liveness [10], although focusing on a more aca-
demic combination of classical and electronic instruments, offers a critical
analysis on the nature of current and future digital instrument designs. He
states that most musical projects thus far have placed an emphasis on the
technical relation between performer and computer, but have trivialized the
poetic relation of musician and instrument by a dislocation of the sound and
source in electronic music. This may stem from an adherence to one view-
point in the division of two opposing sides in late twentieth century music: an
attempt to reemphasize the body in performance versus the disembodiment
of sound for aesthetic freedom. The latter attempts to remove the body as a
means of obvious production through musical gesture without physical ges-
ture — an end to the age of the concert, its associated “spectacle”, and the
necessary evil of the live musician. Striving to free listener and sound from
presupposed relationships, this music can be referred to as “acousmatic”, a
term which is derived from Pythagoras’s method of lecturing from behind a
screen so as to focus the minds of the audience on his words. Many artists in
this tradition believe the ideal setting for a listener is a quiet room and a pair
of headphones so, naturally, their is a disconnect when acousmatic music is
performed live:

This acousmatic character is often cited as one of the difficul-
ties with the reception of acousmatic music — not, it has to
be said, so much because it erases the labour of production, but
more often because there is nothing to look at. Thus there have

11

been various attempts to reintroduce the visual, from video pro-
jections to a focus on the person behind the mixing console as
diffusion artist. The former addresses the perceived need to ac-
company sound with images, without attempting to address the
aforementioned de-corporealisation. The latter, in contrast, is
borne of the desire to re-incorporate human performance, but it
encounters a familiar problem: while there is a body, there is only
a generalised mapping of the physical movements of such a body
(pressing keys, moving faders, and so on) to the types of energy
and gesture present in the music the music remains, in essence,
acousmatic, in the sense that what is known to be the source is
visible but remains perceptually detached.

Croft discusses “liveness” and breaks it down into two types: procedural
and aesthetic. Procedural liveness is the plain fact that input and input sound
is transformed to output sound in real time and aesthetic liveness refers to
aesthetically meaningful transformations between input and output sound
that is achieved through procedural liveness. As noted previously by Salz
and Winkler, aesthetic liveness relies on the link between the performers
action and the computers response in live electronic and computer music.
If the musical mappings are too transparent, one-to-one, then the result
can be banal since it becomes a technology demonstration that highlights
the procedural processes. If many actions yield no appreciable differences
in the sound, as in most laptop and knob/fader driven performances, the
liveness, once again, is perceived as being only procedural — thus the medium
becomes the message. An appreciable delay between action and result renders
the liveness procedural as well and, in this case, the performance might as
well be prerecorded. As discussed by previous authors in this survey, the
instrumental context of physical action and resulting sound is important in
making a device an instrument :

... simultaneity is also closely linked to two fundamental prin-
ciples of live performance: first, we expect a meaningful relation-
ship between what we see the performer do and the sound that this
action generates; second, as Simon Emmerson5 points out, [w]e
expect a type of behaviour from an instrument that relates to its
size, shape, and known performance practice. [10]

5Emmerson (1998: 148) [14]

12

The laptop musician, for example, ignores the first principle in that the
performers gestures are opaque since the audience expects a sound in propor-
tion to the energy of the performers action. It can be argued, however, that
this opacity of relation can be present for an audience unfamiliar with the
physical mechanics or cultural notions of virtuosity particular to a traditional
instrument. This lack of understanding, however, is mediated by a physical
interface whose mappings are still more obvious then that a typical electronic
controller. Even to a completely unfamiliar viewer, traditional instruments
are more readily explored beyond cultural stereotypes down to the essence
of action and result, that the limitations of the instrument, once again noted
by Ryan and Winkler, are what make the performance compelling:

This is surely why performance engages us in a way that cannot
be accounted for in terms of the sound alone: the difficulty, the
impossibilities, the encounter with limits, the finitude of the in-
strumental performance resonates with wider human experience.
This dimension of instrumentality is precisely what needs to be
understood if live electronic performance is to mean anything be-
yond the trivial fact of someone pushing buttons while we listen.
[10]

In order to lay down a blueprint towards electronic instrumentality, Croft
posits a set of conditions for an effective instrumental relationship which in-
clude the relationship between action and response as well as its creative
depth. Action and response must be proportional, a small action yields a
small sound whereas large movements bring about large changes of response
and action. A morphological connection must exist between the type of ges-
ture and musical response: bowing sustains a musical process while plucking
yields a more staccato result. As forwarded previously, these relations must
be synchronous and consistent in order to preserve the connection between
performer and sound. Croft, as Jordá before him, requires that the instru-
ment be both learnable by novices and sufficiently deep and fine-grained for
long-term use and expressiveness. These requirements are built on the recog-
nition that the fact a computer can generate sound in response to an action
is uninteresting in it own right and that the triggering of live sound using
sensors is often dull or merely interesting — that there is more in a live
performance:

The problem, then, for any live electronic music that would re-

13

alise the instrumental paradigm, is to address not only the gestu-
ral, morphological and spatial disjunction in purely aural terms,
but somehow to create the unified expressive persona normally as-
sociated with a solo performance, which is so easily destroyed by
the rigidity and disembodiment of the electroacoustic sound. [10]

Finally, Croft observes that the grain or genotext of performance and the
fragility of the act itself is uncodifiable and unprogrammable. The fact that
the performance can fall apart at any moment is what makes live musical
performance exciting: the tightwire, the high speed car race, the blast-off of
a manned space vehicle all balance upon the precipice — an act of orbiting,
as in falling towards the earth and missing. By using “perfect” live elec-
tronic instruments, immutable recordings, and opaque software processes,
the inherent limitations of both performer and instrument are essentially
eliminated and the performance subliminally lessened by the exclusion of the
excitement of failure. It is the quest toward perfection that characterizes
recorded music, but for a live electronic instrument to become successful, it
must, as Jordá emphasizes, have a capacity for failure — for “bad music”. If
the “spectacle” of live music is the tightrope act between failure and success,
then this author, for one, is willing to take that risk.

14

3 Background

The development of this thesis project was inspired by the tradition of the
“one-man band” and numerous previous performance projects. Examples of
traditional and modern one-man bands are presented and a relevant discus-
sion of this tradition as a “cyborg-entity” is examined. Notable previous
performance projects are highlighted which introduce digital instruments
and controllers, integrate mobile/wearable computing and the body, focus
on ways in which to make the computational generation of sound tangible.

3.1 The One-Man Band

“There is something deeper at work in this extraordinary impulse
to play it all, alone, at one time, with all the requisite physical
agility, and to play it so joyfully. There is a radical independence
at work here, an urge to confront and explore human capabilities
and possibilities, an urge to realise a unique and playful thought.”
Hal Rammel [38]

As defined by Hal Rammel, whose 1990 Joe Barrick’s One-man Band:
A History of the Piatarbajo and Other One-man Bands6 provides much of
this background, a “one-man band” is a single musician playing multiple
instruments at the same time; — an ensemble limited only by the dexterity
and ingenuity of it originator. This tradition, although often attributed a
novelty status, has a well-defined historical record which spans cultural and
political boundaries. Of interest is the persistent drive of some musicians to
“go it alone” for various reasons and the solutions they come to through a
true melding of man and technology. It can be said that the one-man band
has been a cyborg hidden in plain site. Man’s historical use of technology
as an extension to musical abilities is more and more relevant as the use of
computer technology in live music becomes a staple of modern times. The
one-man band of yesterday may not recognize the version of today, but both
share the same passion to realize their music.

6The next entire section, Traditional One-Man Band Instruments, consists of quota-
tions and paraphrasing from this article [38]. Those interested in more detail are highly
encouraged to refer to this source!

15

Fig. 2: Elizabethan clown Richard Tarlton playing the pipe and tabor, 1400’s

3.1.1 Traditional One-Man Band Instruments

History contains a collection of one-man band instruments that have sur-
vived, in one way or another, into cultural tradition.

The oldest noted combination of instruments by a single performer are the
pipe and tabor, first referenced in the 13th century. The pipe is a small flute
played with the left hand and the tabor a drum suspended from the wrist or
shoulder which is beaten by a stick in the right hand. It was commonly used
by traveling minstrels and clowns in Medieval Europe as shown by a 15th
century woodcut of an Elizabethan clown, Richard Tarlton (see Figure 2).
The pipe and tabor can still be heard in rural areas of France and Catalonia
as well as in some South American native music.

The stick zither and “stump fiddle” are single-stringed “rhythm sticks”
consisting of a stick set with a resonator. The simplest version, found
throughout Europe and referred to in 11th century Nordic sagas, is strung
with a pig’s bladder at the lower end and played by scraping a notched stick
across the string producing a percussive sound not unlike a snare drum.
When a suitable noisemaker or bell was attached and the entire apparatus
stamped on the ground, the instrument could function as a full rhythm sec-
tion in accompaniment to carnival bands and was even sold commercially
for this purpose in 1890’s Germany. The American stump fiddle is a similar
instrument used for comic effect in Vaudeville with the bladder replaced by

16

Fig. 3: Example of a modern ”Stumpf Fiddle”, 2006

Fig. 4: A tap drummer and his kit, 1960’s

17

a tambourine, box, or even items such as a washboard. Today’s variant, the
”Stumpf Fiddle” manufactured by The Fiddle Factory of Sheboygan, Wis-
consin, Figure 3 consists of a rubber-footed pole strung with a large coiled
spring over a pie tin filled with BB’s and is adorned with a horn and bicycle
bell.

The tap-drummer’s kit, Figure 4, can be seen as the evolution of the
rhythm stick onto the body in which the performer becomes the stick whose
gestures are mapped directly to sound. It generally contains an assortment
of drums and cymbals worn on the back and shoulders operated by the feet.
By far the most widely known symbol (and stereotype), this one-man band
setup provides percussion accompaniment through the simple act of walk-
ing while other instruments are played with the hands and mouth. The tap
drummer’s cymbal developed into the “sock-cymbal” and later into the mod-
ern hi-hat. In fact, the hi-hat stand, the bass-drum kick pedal, and the entire
modern drum kit can be attributed to big-band drummer Gene Krupa who
helped establish the concept of a single drummer as entire rhythm ensemble
in modern music.

Much in the essence of the tap-drummer, the well-known harmonica rack
allows a performer to play a harmonica or kazoo while leaving the hands
free to play other instruments such as drums or a banjo. Originally available
commercially in early Twentieth Century America, a rack was often fashioned
by hand by those who were not aware of the fabricated version. Numerous
travelling musicians utilized this device to entertain at work camps, festivals,
and Vaudeville. As such, it became ingrained in the American folk tradition
and the combination of guitar and harmonica has become so commonplace
that it is not even associated with the one-man band.

3.1.2 Unique Traditional One-Man Bands

Numerous examples exist of unique and novel approaches by traditional musi-
cians seeking their own accompaniment. Examples include Vaudeville artists,
Jesse Fuller, Fate Norris, Joe Barrick, and Rahsaan Roland Kirk.

One-man stage acts routinely combined piano, guitar, vocal, and percus-
sion sequences and Rammel details several unforgettable performances of the
Vaudeville and music hall venues in the early 20th century:

18

Fig. 5: Jesse Fuller, 1950’s

Ragtime composer Wilbur Sweatman in the early 1900s did a
vaudeville act playing three clarinets at once and Vick Hyde, a
vaudevillian of the 1940s did his finale playing three trumpets
at the same time and twirling a baton as he exited the stage.
Virtuoso Violinsky concluded his act with a piano-cello duet by
fastening a bow to his right knee while his right hand fingered the
strings, leaving his left hand to accompany himself on the piano.
The piano, generally thought to be a two-handed instrument was
played with only the right hand by Paul Seminole in the 1920s
while he played guitar with his left, and for jazz musician and
comedian Slim Gaillard playing the piano and guitar at the same
time was possible by turning up the volume on his electric guitar
“ ... it’ll play itself - you just make the chords and hit the strings,
feedback!” [38]

Jesse Fuller, one of the most widely known and recorded one-man bands,
invented several devices including a foot-operated bass in order to expand
his music. Born in Georgia in 1896, Fuller, Figure 5, did not start playing
professionally until the 1950’s when, after a life of hoboing, crafting, and
World War II ship-welding he decided to turn to music. He had learned to

19

Fig. 6: Fate Norris, late 1920’s or early 30’s

play guitar at an early age and developed his own accompaniment as a one-
man band: the ‘footdella’, an upright bass whose 6 strings were struck by
individual foot-operated hammers, a sock-cymbal, and a special head rack
to hold a harmonica, kazoo, and microphone. His huge repertoire of music
ensured a good working schedule with performances in the US and Europe
and his well-integrated playing brought numerous recording deals.

Bluegrass fiddler Fate Norris toured an entire one-man string band at fairs
and fiddling contests throughout the Southern United States in the 1920’s and
30’s. Best known for playing banjo in the hillbilly string band The Skillet
Lickers, Norris constructed an elaborate arrangement of guitars which he
controlled via foot pedals while playing a fiddle and kazoo (Figure 6). No
recordings exist of the performance which was described in a newspaper
article when the Skillet Lickers appeared in Nashville, Tennessee in 1927:

Fate Norris, of Dalton, Georgia, the one-man wonder, who plays
six individual instruments in an individual band, will also furnish
entertainment. Mr Norris has in his band two guitars, bells, bass
fiddle, fiddle, and mouth harp. He devoted seventeen years to
mastery of his art.[46]

Joe Barrick, a carpenter and musician, turned to his skills and ingenuity
when it became hard to “keep anybody together to play with anybody” [38].
Born to Native American Choctaw parents in Oklahoma in 1922, he began

20

Fig. 7: Joe Barrick and his piatarbajo, 1980’s

playing the mandolin at age 15 and quickly absorbed music off of the radio.
After serving in the armed forces and settling in California as a carpenter,
Barrick began playing in groups and building his own instruments — first
being a guitar built out of a cows skull. When it became hard to keep a
full band together, he decided to perform as a solo act and approached the
problem of playing rhythm guitar using his feet.

The result was the “piatarbajo”, a shelf arrangement containing a board-
mounted guitar, bass guitar, banjo, and snare drum (see Figure 7). The
right foot controls hammers that strike the instruments and the left works
special treadles which operate move-able frets that the chords to be played by
pushing on the appropriate strings of the guitar, bass guitar, and banjo. Each
instrument has a separate pick-up played through a separate amplifiers — a
bass amp for the bass guitar and a corresponding guitar amp for the guitar
— and he would arrange the speakers so that the entire performance sounded
like individual musicians were playing. Motivated by music as a social event,
he toured schools, festivals, and dances and his creative independence was
evident:

No one tells me when to practice and I can play any song I want
without having to hope the rest of the band likes it. [38]

Jazz musician Rahsaan Roland Kirk, Figure 8, sought to recreate the

21

Fig. 8: Rhasaan Roland Kirk, 1970’s

sounds of his dreams and became his own one-man band as a result. Al-
though most one-man bands are thought of as mere novelty, Kirk’s ‘serious’
approach to the tradition enabled him to achieve a true innovation. During
live performances he hung drums, flutes, and whistles around his neck and
arrayed gongs, a sock cymbal, and a bass drum at his feet. He developed a
method of playing 3 saxophones at once and could play 2 entirely different
melodies while improvising a third and playing rhythm with his feet simulta-
neously. Roland Kirk’s sheer physical ability and novel approach to achieve
his goals resulted in a unique musical expression.

3.1.3 Modern One-Man Bands

The one-man band is a rich musical tradition that has been carried on and
adapted with the evolution of technology. Examples include the pioneer-
ing work of Michel Waisvisz, the elaborate electromechanical constructions
of the Japanese performance group Maywa Denki, the self-titled ”One-man
multimedia band” Afasia, and the ubiquitous laptop musician.

Dutch composer and performer Michel Waisviz has developed novel elec-
tric and electronic instruments in order to play his pieces. Largely self-taught,
he focuses on touch and the act of making sound tangible and directs the Stu-
dio for Electro-Instrumental Music (STEIM7) in Amsterdam [29]. Waisviz is
credited with developing one of the first digital gestural music controllers, The

7http://www.steim.org/

22

Fig. 9: The Hands, late 1980’s, Michel Waisviz

Hands (see Figure 9), which consists of wooden shapes fitted for each hand
with buttons for each finger, tilt sensors, and range sensors between each de-
vice. Using The Hands and LiSa, live performance software co-developed at
STEIM, he is able to masterfully control multiple sounds and musical events
in motions reminiscent of the space-controlled Theremin. [20]

The Japanese performance group Maywa Denki creates elaborate musical
devices controlled by single performers. Best known for their device art
“Bit Man” and “Knock Men”, Maywa Denki produces mechanical guitar,
flute, and percussion players for its show Tsukuba Series in order to “stir
people’s attention to the fact that the live musical sound is created from
a substance (musical instrument)” as opposed to “information” stored on
a sampler, synthesizer, or personal computer. Performers utilize Ton-Ton
Kun switch pad controllers to control several electromechanical instruments
simultaneously. [12]

Developed by a collaboration between visual artist and performer Mar-
cel.ĺı Antúnez, mechanical sculptor Roland Olbeter, and engineer Sergi Jordá8,
the one-man digital theater play Afasia allows its single performer to conduct

8See section 2.1.6 for a paper by Jordá

23

Fig. 10: Maywa Denki Pres. Nobumichi Tosa and 2 Mechanical Instruments,
early 2000’s

Fig. 11: Marcel.ĺı Antúnez and his sensor exoskeleton in Afasia, 1998

24

music and control animations and video. Antúnez’s custom sensor exoskele-
ton, Figure 11, features keyboard-like switches mounted on the chest plate
and tilt-sensors placed on the fingers which wirelessly feed data parameters
to a central computer. In turn, this computer controls computer generated
animations, DVD video, and a robotic quartet consisting of an electric guitar,
one-string violin, a drum, and a three-bagpipe “horn-section”. Basic gestures
are mapped to a set of control commands including the muting, playing, loop-
ing, and transposing of sequenced musical tracks. A ‘solo-mode’ also allows
for direct control of the robotic instruments:

While the previous commands use simple one-to-one mappings,
solo modes apply more sophisticated gesture detection mecha-
nisms, that allow for example to play the robot-guitar in an almost
conventional manner, controlling pitch with the performers left
elbow angle, while triggering notes with different right-arm fast
movements that enable the performer to play chords, arpeggios or
monophonic lines. Twelve solo modes (three for each robot) have
been defined. [24]

Since the late 1990’s, the laptop musician has become one of the most
ubiquitous and powerful one-man bands. Today’s machines can easily process
realtime audio, handle a huge assortment of sound files, and be used as live
improvisational instruments. Much like the commercial rhythm sticks of
yesteryear (see 3.1.1), the laptop can be thought of as a Duchampian ”ready-
made” which can be adorned by all manner of acoustic, electric, or digital
noisemakers [4]. The ingenuity of the performer is apparent through the
nearly limitless sonic combinations available through commercial or custom
software, modified or “hacked” electronic devices, and live sound processing.

It is important to note that, although the laptop musician has become
more and more common, the general cultural reception of live “laptop music”
is still largely cold: “to play live with turntables and a drum machine goes
unchallenged, but for a laptop producer to appear alone behind a laptop
without visuals is still resisted by many”. One reason for this reaction is
that the computer itself stands as a symbol for de-humanisation and the
complete abstraction of sound into raw data somehow removes this essential
‘human element’. [32] A second reason is that many onlookers fail to see
the performative aspects of laptop music and will become confused, lost
or bored due to the perceived loss of visual, aural, and tactile interaction

25

between the performer and their instrument9. Audience members outside
of the experimental and electronic music scenes have not yet accepted the
performance of laptop musicians much as many of a previous generation
rejected synthesizers which now have become so commonplace that their use
is no longer questioned. Listeners, instead, are asked to focus on the “aural
performativity” as opposed to visual and physical actions in order to fully
appreciate the art of the laptop musician. [43]

3.1.4 Relationship Between Instrument and Musician

The one-man band can be thought of as the ultimate combination of per-
former and instrument maker in that most performance systems are custom
made. In The Haptic Sensation and Instrumental Transgression [39], Pedro
Rebelo states that a relationship exists beyond the simple act of the produc-
tion of sound in that each instrument defines ways to be touched, felt, and
activated. In order to explore the instrumental relationship, Rebelo further
proposes thinking of the instrument, not as a tool to be controlled, but as a
multimodal participatory space in which it is as much an entity as its player.
The performer participates in a ‘Smooth Space’, as identified by Deleuze
and Guattari [11], which is navigated by a constant reference feedback loop
between player and instrument.

This feedback loop is integral to the one-man-band since most perform-
ers construct their own instruments, in effect creating musical partners. The
notion of the instrument as an ‘entity’ that carries its own context and dis-
tinction is largely absent in Western music tradition, whose prevailing trend
is towards the standardization of instruments, tuning systems, and timbre. In
the case of African musical culture, however, instruments contain a unique
context because they are built based on need, availability of construction
materials, and the experience of the builder. It is within this context that a
melding of African and Western musical traditions occurs within the one-man
band. The construction and performance of these instruments and systems
can be seen as the birth and training of new musical entities in the same vein
of the African instrumental tradition:

[E]ach musician makes his own instrument to suit his own par-
ticular tastes. He also teaches the instrument the language it will

9Refer to the texts by Jordá and Croft in Section 2.1 for more detail.

26

speak which is, of course, the musicians own mother tongue. [5]

3.1.5 The One-man Band As A Cyborg Entity

Cyborg. Cybernetic organism. The melding of the organic and the
machinic, or the engineering of a union between separate organic
systems. The Cyborg Handbook [19]

In the tradition of the one-man band the relationship between performer
and instrument is also that of man-machine — the one-man band is a “cy-
borg entity” with the deep relationship between performer and instrument.
Strictly speaking, a “cyborg”, short for “cybernetic organism”, is a combi-
nation of organic flesh and mechanical and/or electronic parts, such as the
pacemaker. [19] For the purpose of this discussion, the term “cyborg” will
be used more loosely to refer to the man-machine combination outside of the
body, as in eye glasses, which act as an extension to the body allowing the
user to perform actions they could not normally carry out. Most traditional
musical instruments can be seen as cyborg extensions: a woodwind instru-
ment allows the player to produce sound using breath, mouth, and finger
action — without the reed and hollow tube this would not be possible. In
the same manner, the instruments and systems of the one-man band allow
the performer to play multiple instruments designed for a single performer
simultaneously which would otherwise not be physically possible.

In the case of custom-built instruments such that of the one-man band,
the “cyborg entity” has a large performance capability compared to stan-
dardized instruments since the machine half of the cyborg fits more readily
with the needs of the human half. The standardization of instruments, as
noted earlier in section 3.1.4, has resulted in standard lengths, sizes, and
types of instruments, yet standardization cannot fully take into account, for
instance, the physical difference in size of the human hand from person to per-
son. Generally, physically small instruments are played by physically small
musicians and the same is true for large instruments and large musicians.
If a “small” person wants to play a “large” instrument, the instrument can
be modified or custom-built in order to better fit its player and result in a
better relationship between musician and instrument. Thus in creating one’s
own cyborg attachments and enhancements, the builder can better realize
his own goals as a musician.

27

3.2 Relevant Previous Works

Many notable performance projects were examined in the course of this the-
sis’ development for their use of mobile computing, attempts to make sound
tangible, and practical considerations for live performance. The “Sound-
walk” is a technologically mediated exploration of the urban environment
included due to its use of mobile computation. Exceptional interfaces such
as the BioMuse and the Body Coder represent radical departures towards
embodied sensor technology and sound. Several projects have focus on wear-
able musical instruments and interesting examples of tangible performances
are included.

3.2.1 The Soundwalk

Sonic City and Sonic Interface are mobile computing projects which map
environmental information into live sound in the form of the “soundwalk”.
Gaye, Maz, and Holmquist’s Sonic City maps “mobility as interaction”
through the everyday walk of a city dweller and generates sound using move-
ment, light, and sound sensors. The prototype system is designed to be worn
on the body utilizing a laptop computer, stereo microphone, headphones,
and special sensor jacket. Much focus was focused on the sound control and
design space with a framework built for context-aware sound generation. The
result is a mobile, expressive, and responsive experience which highlights the
movement and aspects of the users environment. [17]

Maeybayashi’s Sonic Interface (Figure 12) is “an extension for the ears”
which highlights previously unnoticed sound through realtime sampling and
remixing as the user traverses their environment. The system consists of a
laptop computer running the realtime audio processing software MAX/MSP,
microphones to sample sounds around the user, and headphones for the play-
back of the processed sound. It functions as “an auditory filter which modi-
fiers all the sound the subject encounters” and “[c]hanges in a sense of time
and place caused by this equipment will make the subject conscious of ex-
changes between the body and the environment” [31]. The user wears the
system in a backpack and is guided by a navigator for safety reasons. Reality
becomes replaced by a “virtual reality space” in which participants can “see
everyday things” but a feeling of reality” becomes very thin. [26]

28

Fig. 12: Maebayashi’s Sonic Interface in use

Although these projects present an engaging user experience, they were
not designed for direct music control which is an important requirement for
this thesis project. The use of sensors mounted on the body provides input
which is only controlled by the user in a passive sense, they do not have direct
access to the sound processing mappings beyond the mediation of sensors and
microphones. As the goal of these projects is to encourage exploration of ones
environment such mediation is not an inherent failure and, in the scope of
this thesis, each project’s focus on mobility is relevant.

3.2.2 Exceptional Body Interfaces

Numerous digital instruments were developed during and after the MIDI
revolution of the mid 1980s and early 1990s with several notable examples
in The Hands, Body Coder, and Bio Muse. As noted earlier in section 3.1.3,
Michel Waisviz developed The Hands, Figure 9, in order to control digital
sound processes in an organic, gestural manner. Considered the first digital
gestural music controller, it consists of wooden shapes fitted for each hand
with buttons for each finger, tilt sensors, and range sensors between each
hand. [20] The author has witnessed a live performance by Waisviz using
The Hands and, unlike many such devices, the instrument becomes a true
extension of the musician as Waisviz appears to grab and arrange “sound
itself”.

Bromwich and Wilson’s Body Coder system is “a sensor array designed
to be worn on the body of a dancer” which communicates over a custom ra-

29

Fig. 13: A BioMuse

dio system. Resistive bend sensors are positioned over body joints and sewn
into a skin-tight costume and 4 switches mounted within a glove allow map-
pable function control. Sound generating devices are controlled via MIDI and
control-voltage outputs from the radio base-station and several performances
using the system have utilized the MAX/MSP realtime audio-processing envi-
ronment. From its inception, the system is meant to be a “hyperinstrument”
to “transform the dancer into a musician/instrumentalist”. [7] This melding
of two aesthetic art forms, dance and music, is a non-trivial endeavour and
the developers of the system have acknowledged this fact:

In attempting to ’liberate’ the dancer from his/her traditional role
as subservient, by providing him/her with the means of controlling
and manipulating sound, in attempting to reduce the gap between
composer and choreographer, in attempting to create an interface
between dance and music through the use of new technology we,
like a number of our colleagues, have created another gap; the
gap between the interactive and the non-interactive and the skill
based difference between the single established art-forms of dance
and music, and the seemingly, poor and less skillful sister, the
interactive genre. [8]

The BioMuse, Figure 13, is a musical interface which senses the biological
signals of the performer. Developed at Stanford University, the system gen-
erates serial and MIDI data based on realtime electroencephalogram (EEG),
electromyogram (EMG) and electrooculogram (EOG) information relayed
through surface gel electrodes on the skin. [28] Atau Tanaka of SensorBand
(see section 3.2.4) plays this device using the muscle movements of his arm

30

Fig. 14: Atau Tanaka performing with a BioMuse

and chest to drive custom patches in the MAX/MSP realtime software envi-
ronment (Figure 14). For Tanaka, the electrode placement, BioMuse hard-
ware, and computer forms the instrument and the MAX patch the musical
score. The entire system can be seen as an extension of the gestural music
controller in which gesture becomes the instrument itself: “... my use of the
BioMuse is an abstraction of instrumental gesture in the absence of a phys-
ical object to articulate music through corporeal gesture. [44] Interest in the
device and its applications have spawned several similar projects such as the
MiniBioMuse which “costs about one hundredth [of the BioMuse], [is] small
like [a] VHS-tape, [and] very light and portable with [a] battery” [33].

These body interfaces are quite complicated and are the focus of projects
in their own right. The direct use of the body as a gestural instrument re-
quires more elaborate systems than those used in this thesis, but the concept
of the body as instrument itself is very relevant to physical performance.
Since cost is one of the goals within this thesis project (see section 5.1), the
expense of such interfaces is prohibitive and, as is such with advanced tech-
nology, their “wow” factor can cause the audience to focus on the mechanics
of the devices rather than the musical and performance aesthetics.

3.2.3 Wearable Interfaces

Interfaces designed to be worn have been proposed and prototyped in previ-
ous projects such as the MIT Musical Jacket Project and CosTune. The MIT
Musical Jacket (Figure 15) Project was developed in order to explore a way

31

Fig. 15: The MIT Musical Jacket, 2000

Fig. 16: The CosTune jacket varient, 2001

in which to “merge computing ”seamlessly” into our everyday shirts, shoes,
or eyeglasses”. A capacitive fabric keypad sewn over the left pocket controls
a microcontroller circuit which in turn signals a custom compact MIDI syn-
thesizer. Sound is played via a miniature set of speakers or external audio
amplifier. The electronics can be removed and the jacket washed normally.
[35]

CosTune, “costume” + “Tune”, is a set of wearable musical instruments
designed for live, wireless ensemble jam sessions. Custom mobile gestural
instruments including gloves, a jacket (Figure 16), and pants seamlessly con-
nect to a server over an ad-hoc network and, as with network performance
projects, this medium connects the performers. The players receive the mu-
sical control data of each other in order for their portable synthesizers to
generate the performance on headphones. The main goal of the project is
to facilitate communication using music — “We designed ‘CosTune’ to be a

32

communications tool rather then a simple musical instrument” — and, for
example, the wireless coverage of the CosTune server is kept within 50-100m
in order to make sure players can locate each other visually. [34]

For the requirements of this thesis, both the Musical Jacket Project and
CosTune suffer from simplicity as they are effective interfaces, but are too ba-
sic to be useful musical expression systems. The keypad layout of the Musical
Jacket allows simple note triggering but is not useful beyond its technological
novelty. The gestural nature of the CosTune wearable interfaces are more
flexible but, however, the musical mappings and aesthetic description of this
important aspect are lacking in the documentation of the project making
it hard to gauge the musical performance. As with many such interface
projects, the musical output is not a main focus beyond “playing sounds”.

33

Fig. 17: The SensorBand Soundnet, 1990s

3.2.4 Tangible Performances

Tangible musical performances, in the realm of this thesis, are performances
in which the generated sound is the result of a physical action of the per-
former and in this sense SensorBand, the Afasia performance, and the works
of Laurie Anderson are relevant. The SensorBand trio of van der Heide,
Zbigniew, and Tanaka performed throughout the 1990’s using sensor-based
gestural computer music controllers such as the Soundnet, a giant musical
web for “human spiders”(Figure 17); the BioMuse 10, a biological signal in-
terface; and the MIDI-conductor, “an ultrasound-based spatial hand-held
instrument”. The performance of these instruments strongly links the ac-
tions of each performer to the sound that they produce as with a traditional
ensemble. SensorBand has toured and performed within both academic and
commercial venues and their music is full of energy “at the roots” of tradition:

SensorBand’s music is contemporary, non-commercial, and we
use new technology. We want to communicate. Our concerts
exploit energy, we want the audience to feel like they have just
gotten their batteries reloaded. We want them to feel stronger
and like better human beings. [6]

As mentioned in section 3.1.3, Afasia is a “one-man-multimedia-band”
whose single performer conducts music and control animations and video. A
custom exoskeleton transmits multiple switch and tilt-sensor information to

10See Section 3.2.2 for more infomation on the BioMuse

34

Fig. 18: Laurie Anderson, 2000

a central control computer which controls video and four robotic musicians.
The show is performed in a theater setting with the robot quartet occupying
the front of the stage. One of Afasia’s design goals was for the control of
the performer over the audio-visual system to be apparent to the audience.
Interaction protocols were designed to be “visually obvious” and the whole
system was built “according to the personality of the performer, who likes to
move in brusque and coarse movements” [24].

A premier modern performance artist, Laurie Anderson’s work has in-
cluded numerous stage performances utilizing technology “as a means of
representing the individual in the modern world of mass culture and hi-tech
simulations”. For Home of the Brave, she dances a “Drum Dance” using a
custom suit with built-in drum triggers which are played with large, mechani-
cal movements as if controlled by invisible puppet strings. Anderson’s “Light
Suit” is a both a costume and lighting device which illuminates and maps
the performers movements within the theatrical space. For Anderson, the
body becomes the “ultimate portable instrument” [3] embodying performer,
props, set, and soundscape. [23]

The work of these projects as tangible performances has influenced the
design of this thesis. By connecting bodily movement with the generation of
sound, the bodiless technology that creates this sound becomes part of the
performer. It is this embodiment and emphasis on the relation of action to
sound that is most relevant to the robotcowboy project.

35

Fig. 19: The robotcowboy helemt

4 Experimental Performances

During the genesis of the robotcowboy project, several preliminary exper-
iments were conducted in the realm of performance using technology: the
“robotcowboy helmet” and the “robotcowboy button box” [sic]. The robot-
cowboy helmet is a computer-monitor mask which turns the wearer into a
face-changing icon of modern computing and the robotcowboy button box
is a wireless play button for automatic play list control of music software.
These tests of interaction and performance principles helped shape the main
goals, structure, and substance of the robotcowboy “unit” detailed in Section
5.

36

4.1 robotcowboy helmet prototype

The robotcowboy helmet, Figure 19, is a computer monitor worn on the head
for human computer performance. This head-covering mask is built out of
an Apple iMac computer case, lcd monitor, motorcycle helmet, and plastic
foam. Since the face is completely covered, vision is supplied via a small
video spy camera mounted just above the monitor and the signal is viewed
through a pair of video goggles. The case was chosen due to its availability
and the Apple design aesthetic which features a convenient construction for
dis-assembly/reassembly, sufficient space for the various components, and a
good proportionate size in relation to the authors body. A wearable computer
(see Section 5.2.1) provides the images and “faces” on the screen itself and
a sizable lead-acid battery worn on the waist can power the 33W display for
almost 2 hours.

As a tool for performance, the helmet transforms the wearer into a phys-
ical cyborg as the of man-machine is literally brought to life when the per-
formers head is replaced by a computer monitor. Mashiro Mori’s “uncanny
valley” argues that the human reception of robots and other non-human
forms is non-linear, Figure 20. As a robots shape approaches human form
there exists a dip in which the differences between real and unreal forms are
found disturbing and even repulsive [16]. In masking the human face, the
robotcowboy helmet wipes away part of the wearer’s humanity and fills it
with computer output — a thousand and one faces. As a “humanoid form”
the performer falls into the upper slope of the uncanny valley becoming a
technological puppet, a walking computer. Since the helmet is constructed
to hide the face as much as possible in order to foster this transformation,
viewers can easily engage in the “suspension of belief” in which the actions
and movement of the helmet’s wearer become unreal.

Experimental performances undertaken utilizing the robotcowoy helmet:

• debut: an experimental cyborg performance using guitar, electronics,
and sequencing software, April 2006 (Figure 21)

• recharge: an homage to Paik’s TV Buddha; installation/performance,
May 2006 (Figure 22)

• midi karaoke: a living karaoke machine, November 2006 (Figure 23)

37

Fig. 20: Mori’s ucanny valley

Fig. 21: debut, the first performance with the robotcowboy helmet, 2006

38

Fig. 22: recharge, an homage to Paik’s Video Buddha, 2006

Fig. 23: midi karaoke, a living karaoke machine, 2006

39

As a symbolic device, the helmet represents both the benefits and liabili-
ties of augmenting oneself with technology. As with any new and interesting
consumer devices, the helmet has always generated a certain amount of ex-
citement, attention, and spectacle — at a dance party guerrilla performance,
for instance, random women left over 10 lipstick imprints on the screen. Bat-
tery life and weight become important liabilities for the performer since, for
example, if the video goggles run out of power, the wearer is blinded. Electri-
cal energy concerns thus become integral to the helmeted performer as with
any augmented cyborg.

The monitor helmet has become an icon of the robotcowboy project and
the author, although at the time of writing it has not been used in over 6
months due to problems with the prototype. Obviously, weight is an issue
and since the lcd is an older, cheaper model, it has a heavy, power hungry
back light. The video goggles and 375 line video camera are far too low
quality, making vision nearly impossible in low-light conditions and, during
one performance, the automatic gain circuitry of the camera oscillated the
brightness of the picture due to a strobe light. These issues can be rectified
with a newer, lighter screen and better sighting system such as a periscope,
fiber-optic cable sight, or more expensive video system.

As an experiment into human-computer performance, the prototype hel-
met provides a novel experience for the audience at a loss to the performer.
It creates a believable cyborg avatar and is a good example of device art,
yet inhibits the performer’s mobility, vision, and performativity both sym-
bolically and physically. As a costume element for a musician, the helmet
is restrictive in that the instruments cannot be seen which requires one to
practice blindfolded in order to be able to play effectively. Although begun
in the auspices of a human-computer musical project, it was quickly realized
that, although the helmet is effective visually, it is not as useful musically.

4.2 robotcowboy button box

The robotcowboy button box, Figure 24, is a wireless button in the triangular
shape of the common green “play” symbol which gives a performer symbolic
control of abstract musical computation. The box consists of button and light
emitting diode (led) handled by a micro controller which utilizes an RS-232
serial Bluetooth modem for wireless connectivity. “cue” (play/pause) and
“load” events are determined by the length of the button press: a short

40

Fig. 24: The robotcowboy button box, 2006

press is a cue and a long press (greater than 1 sec) is a load and the led
flashes during the loading process. Custom application and play list scripting
receive these events and execute the corresponding action within the music
software, in this case FL Studio. FL Studio11 is a commercial sequencing and
sound generation application which does not contain extensive automation
controls, requiring non-ideal direct intervention using a keyboard and mouse
during live performance. The author has performed solo guitar and vocals
with computer backing tracks composed and played in FL Studio and the
button box is the result of these experiences.

A solo musician accompanied by electronic means is encumbered by forced
interaction within a live setting. In the authors experience, onlookers can
sometimes perceive that the electronic sound generation/playback device
ways is in control of the performer — in between songs the solo guitarist
must turn away from the audience and use his computer to set up the next
song. A performance can be seen as a feedback loop of energy between the
audience and musician and the experience can be diminished if this flow is
interrupted over and over again. By using a wireless control device and au-
tomaton, the button box becomes the only physical technological device on

11http://www.fruityloops.com/

41

stage as the computer can be hidden from view to break the focus on it as
a needy performer. The green “play” button becomes a recognizable symbol
of the wearers authority over technology and, mounted on the chest with
velcro, this symbol is literally integrated into the body — the main focus of
live musical expression.

The system worked successfully and was used in a number of perfor-
mances. The Bluetooth modem provided a range of over 30 meters at the
cost of a 30 minute battery life. Visual feedback from the status led and audio
tones enabled the author and the audience to relate the action of pressing the
button to sonic results: several tones were played and the led flashed as the
song was loading. This small feedback is vitally important to the performer
as it denotes the working status of the system.

In the scope of the development of this thesis, the button box helped
define several of the musical goals of the project. Although the box solved the
important performance problem of the laptop onstage, it did not change the
method of making music. Sequencing12 is a very powerful technique utilized
by numerous commercial hardware and software systems. For the author,
however, the act of creation through sequencing is a laborious task which
does not allow much room for spontaneity in the end result, as the score is
rigidly followed each playback. Even though symbolically the music is being
generated in realtime from a prearranged score within the computer, there
is no aesthetic difference between this action and a prerecorded version of
the same piece. As per Croft’s definition13, the liveness is merely procedural,
not aesthetic. In order to escape this method of creation and performance,
the author decided to seek his own software paradigm for sound scoring and
generation within the robotcowboy project.

12creating a musical score through event timing and repetition of musical patterns
13See Section 2.1

42

5 robotcowboy unit

The robotcowboy unit is the wearable computer system at the core of the
robotcowboy project. It is the machine half of the musical cyborg which
handles realtime audio generation, controller mappings, and musical scores
in the form of software patches. The main design requirements and goals of
the system are listed and its description is broken down into the hardware
and software implementations. Velocipede, a prototype performance map-
ping/song patch is presented in order to detail an example software score
implementation and hardware interface. Results analyzing how well the sys-
tem meets the design requirements and goals are discussed.

5.1 Design Requirements

Within the design space of this thesis project, it is important to define a
limited set of requirements in order to narrow down particular points of
focus. These were chosen through experimentation 14, from critical research
15, and for practical and aesthetic reasons. They are centered on the needs
of the wearer in the live environment since the author desired a system that
provides the limitless sonic potential and control of digital computation, yet
is a easy and effective for performance and spontaneous creativity — just as
analog instruments such as the electric guitar. This is the manifesto of sorts
for the robotcowboy project but it can and should be applied as a basis for
other electronic instrumental projects.

mobility the system should be as mobile as possible, allowing the performer
to interact with the audience physically; the world outside of the con-
cert hall becomes a venue through batteries

performance the system should not impede performativity, but enable it;
previous computing systems have largely inhibited performance thro-
ugh forced interaction and special care must be maintained in order to
avoid this pitfall; all interfaces and devices used by the system must be
designed with live performance in mind; the musical aesthetic must not
be sacrificed for the sake of “cool” technology, virtuosity and playability
should not be subject to interaction

14see Section 4
15see Section 2.1

43

instrumentality in order to achieve instrumentality and performance ex-
citement, the system must be able to produce “bad music” and have
some capacity for failure, it should not “play itself”; a proper balance
must exist between complexity and musical depth, it should be easy
to pick up but hard to put down; tangible physical effort should be
required in order to facilitate a more intense relationship between in-
strument and player; physical action and musical response must be
mapped in meaningful ways with little delay to ensure embodiment of
action and sound16

improvisation the system should enable improvisation and the “jam” ses-
sion without forcing the simple repetition of playback; flexibility for
different modes of song or theme performance should be maintained

reliability the system should just “work” and all elements must tested thor-
oughly before extended use; a live performance environment can be
demanding and the system must be hardy enough to withstand it

low cost the system should be as low cost as possible without significantly
sacrificing any of the other goals; most musicians do not have unlimited
funds to spend on expensive technology, and, in the spirit of post-
digital17, do-it-yourself, and hacker culture, devices should be based
off of cheaper, available items; why reinvent the wheel, when you can
adapt a pre-made one?

5.2 Hardware Implementation

The hardware implementation of one-man-band cyborg apparatus that is
the robotcowboy unit consists of a wearable computer, external soundcard,
and peripheral devices. The computer is a specially designed machine for
industrial use, the soundcard is a common digital audio interface, and the
peripherals are built upon largely low-cost gamepads and joysticks.

44

Fig. 25: The robotcowboy unit main hardware

Fig. 26: The robotcowboy unit hardware flowchart

45

5.2.1 Computer

units main hardware (Figures 25 and 26) consists of a Xybernaut MA V
wearable computer and a Roland UA-25 external Universal Serial Bus (USB)
soundcard. The computer is a specially designed mobile computational plat-
form for the commercial and industrial sectors with a low-voltage 500MHz
Pentium 3 Celeron processor, 256 MB of RAM, a 4 GB hard disk drive (which
has been upgraded to a 20 GB model), compact flash card slot, powered IEEE
1394 Firewire and USB ports, and an LVDS digital monitor connector. An
expansion bay provides further powered Firewire and USB ports, a VGA
monitor connection, and belt mounting brackets. Two battery packs give
3 hours of operation and the whole system weighs only about 1.5 kg. Al-
though out of production as the industrial market for mobile devices has
shifted from wearables to wireless tablets, this particular computer was pur-
chased through the eBay online auction system for $350 USD, substantially
cheaper than building a custom made system.

The wearable platform was chosen for its mobility design and reliability.
A system already designed to be worn on the body (see Figure 27) and used
during active use by the wearer makes an obvious choice and the Xybernaut is
a hardened, power efficient device that is meant to work in a rough industrial
environment. Being over 4 years old, computing capability is comparable to
modern PDA’s. These devices, however, do not provide as robust a platform
since they are designed for commercial use, do not feature graphics ports, and
contain built in screens which further drain battery life. Since the separate
touch screen of the Xybernaut can be removed, further power is saved and
a main symbol and focal point of the human computing experience is thus
eliminated.

Lumsden and Brewtser [30] define important interaction design require-
ments for mobile and wearable devices which are fundamentally different
from those of desktop computers. So far, most mobile interfaces have been
designed with the desktop GUI in mind even though the mouse, keyboard,
and screen paradigm is not practical, a screen can take too much focus, size,
and battery power for example. The authors define 3 principles for mobile in-
teraction: safe mobility, the interaction must not impede the users navigation
of the environment; physical awareness, the interaction must be appropriate
for the physical situation; and task awareness, the best interaction must be

16see Jordá and Croft in Section 2.1
17See Cascone in Section 2.1

46

Fig. 27: The robotcowboy unit as worn on the body

chosen for the computing task at hand. For many devices, an emphasis must
be moved away from the visual paradigm and toward the “hands-free” and
“eyes-free” interaction for more effective specific use. By removing the dis-
play from the computer, the robotcowboy unit thus becomes an embedded
mobile computer system whose interface can be more specifically designed to
the needs of the musician. Its interaction is not mediated through a screen,
keyboard, and mouse, thereby distancing it from the natural symbolism of
the general purpose computing device:

At a performance by Jim O’Rourke in 1997:
...there was no stage, Jim was set up at an ordinary table with
his G3...halfway through his set, a young woman made her way
through the audience to Jim’s table, and began talking to him as
he performed:

Girl: “Hey, when’s the next band on?”
Jim: [distracted]“...uhhh, they’re on right now.”
Girl: [confused]“Really? Who are they?”
Jim: “...it’s me!”
Girl: [looks confused; walks away]

...it was clear that the uncomprehending girl was thinking “that
guy with the computer must be one of the organizers of the event”

47

or something, that is, computers are tools for organizing informa-
tion (and thus exercising control), but not for making art. [15]

Physically mounting the computational system on the body (see Figure
28) brings about a semiotic return to the embodiment of both electronic
performance and sound. There is an obvious physical disconnect between
a laptop musician and a machine that weighs him down through stationary
design and forced graphical interaction. The laptop is a digital construct
that requires users to adapt to it while the wearable computer can be seen
as a post-digital device physically adapted to fit is wearer. It is, therefore
natural that music created on laptops has been largely of the disembodied and
“sonic-architecture” variants [15] since the performer cannot truly engage in
an instrumental relationship with his computer18. Even when using separate
gestural controllers, it is important to note the performer is subconsciously
aware of this disconnect. In placing the computer directly on the body, this
thesis projects hopes suggest a paradigm in which foster a physical, semiotic,
and instrumental return to the body in the realm of electronic and computer
music.

5.2.2 Soundcard

An external soundcard and a direct input box (see Figures 25 and 26) enable
audio “plug and play” on stage. The Roland UA-2519 USB bus-powered
stereo soundcard features a microphone preamp, standard and optical audio
connections, and MIDI input and output ports. An attached direct box
converts high-impedance signals to microphone level for connection to a stage
mixing and amplification systems [27] and both devices are mounted within
a belt worn fabric case. This direct audio connectivity enables the performer
to simply walk on stage and plug into an amplifier system, much like a guitar
player plugging in his instrument. Mobility comes from this simple freedom
by removing much of the required hardware setup (see Section 5.3.3 for a
similar freedom from software setup).

48

Fig. 28: The author demonstrating the physical embodiment of the system

49

Fig. 29: Example robotcowboy unit peripheral devices

5.2.3 Input Devices

robotcowboy peripherals include human interface devices (HIDs), MIDI con-
trollers, and serial devices (see Figure 29). unit is a platform for mobile
computation and has no built in sensors or input devices of it’s own and the
built-in USB and Firewire ports offer the needed connectivity (see Figure
26) with low cost gamepads acting as stable sensor boards. USB to RS-
232/parallel port converters can be used to connect older serial devices to
the computer such as cheap micro controller systems and MIDI input/output
is provided via the USB soundcard (see 5.2.2). Custom serial devices based
on micro controllers can be incorporated such as the robotcowboy button box
(see Section 24) which is used to send play list and transport control com-
mands. Currently, the main robotcowboy peripheral performance units thus
far are common human input devices: a gamepad and a MIDI guitar (see 5.4
for more details).

As discussed by Steiner, Merill, and Matthes, [2] HID’s provide easy ac-
cess to gestural data through motion, pressure, and button presses and many

18see Jordá and Croft in Section 2.1
19http://www.roland.com/

50

Fig. 30: PureJoy : a live sampling and looping system [1]

have a high enough resolution and sampling rate for live musical performance.
Since these devices are commonplace, their physical performance, gestural,
and musical mappings are more transparent to an audience used to inter-
acting with such interfaces. An increasing “physical computing” interest is
looking to HID’s for electronic sound, music, and video controllers as op-
posed to the creation of custom hardware which require a greater degree of
technical expertise.

USB gamepads were chosen as the main interface platform since they are
available, cheap, and easy to modify. As noted by Jensenius, Koehly, and
Wanderly [22], such devices can be found almost anywhere for little over
$20 USD and are far less costly and complicated then a comparable micro
controller or specialized sensor interface. In many cases, the off-the-shelf
interface is suitable for the performance requirements as in the example of
David Merrill’s PureJoy system [1] which controls a Pure Data live sampling
and looping patch (see Figure 30). In others, a more customized device can
be constructed from a gamepad by opening and wiring external switches
and simple resistive sensors to the 10-12 digital buttons and 4 built-in 8 bit
analog to digital converters (ADCs). Most analog sensors, such as Piezo discs,
flex resistors, and motors, can provide interesting input options and some
more complex system-on-a-chip devices, such as the QT113 capacitive touch
sensor20, send simple binary triggers which can be mapped to button events.
Jensenius et al. demonstrated that even cheap conductive materials such as

20http://www.qprox.com/downloads/datasheets/qt113 105.pdf

51

Fig. 31: Cheapstick : an affordable positional controller [22]

foam and magnetic video tape can be used to construct a custom positional
controller: the Cheapstick [22] (See Figure 31). Specialized software drivers
are required to map joystick and gamepad events to musical parameters and
this is accomplished within the robotcowboy project using the unit-daemon
(see Section 5.3.3). Dedicated modern video game console controllers such
as those for the Playstations 1-3, Gamecube, and Xbox/Xbox 360 are very
durable and can be used on regular computers through third-party adapters.
Examples of planned robotcowboy interfaces listed below represent a small
amount of the possibilities for custom interaction:

• A 16 button matrix made by wiring mechanical push buttons to the
gamepad’s original button contacts

• 4 potentiometers mounted on different areas of the body wired to the
gamepad’s 4 ADC’s

• Resistive bend sensors for one hand wired to the 4 ADC’s

• A spinning weight attached to a motor whose speed is read by an ADC

• A glove with simple capacitive touch sensors, QT113’s, connected to
optoisolators which trigger buttons

• Piezo discs worn on the feet which are read by the ADC’s for ‘stomp’
sensing

52

By choosing a low-cost and readily-available input platform, a greater
number of varied instruments can be constructed and used in combination.
It is the essence of the post-digital instrument to reuse and adapt technology,
as stated by Cascone and Richards in Section 2.1, and this aesthetic choice
can lead to greater creativity than the use of much more advanced yet bulky
and almost prohibitively expensive interfaces such as the $650 IRCAM Eo-
body21. By doing some simple math, $650 / $20 = 32.5, it is obvious that
having 32 possible instruments is preferable to one interface box without
additional sensors and this sum, in fact, approaches the entire cost22 of the
robotcowboy unit! Granted, the 100Hz sampling rate and 8 bit resolution of
most gamepads are not as flexible as compared to the 200 - 4000 Hz and 7
- 16 bits of many popular sensor interfaces, but the author for one does not
mind this trade-off. [22]

21http://www.forum.ircam.fr/361.html?&L=1
22$720, see Section 6 for more details.

53

Fig. 32: The robotcowboy unit software flowchart

5.3 Software Implementation

The software which powers the robotcowboy unit wearable computer is a cus-
tom input daemon, the Jack realtime audio daemon, and Pure Data running
on GNU/Linux (Figure 32).

5.3.1 Operating System

GNU/Linux was chosen as it is a free, stable, and easily customizable operat-
ing system that can be slimmed down to run efficiently on slower hardware.
The Linux kernel23 running the robotcowboy unit, for instance, has been
specially compiled for realtime audio applications. GNU/Linux has a proven
track record in embedded devices, servers, and a growing desktop user base.
The philosophy of the Free Software Movement 24, whose members developed
GNU/Linux, is that software should be free and its source code openly dis-

23the main operating program of the GNU/Linux operating system
24http://www.fsf.org

54

Fig. 33: An example Pure Data patch

tributed which encourages collaboration and creativity among its users. The
software environment is designed for programming and application expansion
and this sharing of information and customization allows users to construct
free, stable systems for specific needs.

5.3.2 Sound Generation and Processing Environment

Pure Data (or Pd) [37] is a graphical “patching” program and object-oriented
interpreter for realtime audio processing created by Miller Puckette in 1996
as a logical progression of MAX [36]. It consists of a realtime software digital
signal processor (dsp), event scheduler, and a separate gui (graphical user in-
terface) that presents atomic elements and user made modules as small boxes,
or objects, which are connected, or “patched”, together showing a representa-
tion of the signal processing flow (see Figure 33). As Martin Dixon notes [13],
it is this graphical abstraction and throw back to modular analog patching
synthesizers and processes that enables creativity, “play”, and improvisation
with largely complex digital signal processing methods. The very interaction
design of Pure Data encourages the post-digital desire to tinker and create
empirically.25

55

Fig. 34: unit-daemon flowchart, see unit-daemon.cpp in Appendix A

56

5.3.3 unit-daemon

“unit-daemon” is a custom input and play list handling daemon written in
the C++ object-oriented programming language which essentially scripts all
of the separate software elements of the system26 (See Figure 34). It auto-
matically starts the Jack realtime audio daemon27 , initializes Pure Data and
sets it to use Jack, calls the Advanced Linux Sound Architecture 28 program
“aconnect” to route MIDI between Pure Data and the external soundcard,
and enters an input device handling loop. Open Sound Control (OSC)29 is
used for device communication between unit-daemon and a Pure Data con-
trol patch, unit-control (Figure 35), which accepts OSC commands to open,
close, start, and stop specified patches which are kept in a circular play list
for live performance. All control aspects are customizable in configuration
files30 such as the commands that start Pure Data and Jack, the soundcard
to be used, the control patch to load, and the play list patch filenames. Spe-
cific event feedback is provided to the user through audio playback using
the alsaplayer application. Although specifically designed to use Pure Data,
unit-daemon can be easily extended to provide control over other realtime
sound software such as MAX/MSP31, Supercollider32, and ChucK33.

unit-daemon automatically handles the insertion, use, and removal of
USB joystick devices. Much like the Pure Data HID-toolkit [2], it consists
of an event listener within the unit-daemon main loop and a device hot plug
mechanism to notify the listener. Custom rules created for udev34, the de-
vice manager for modern versions of the Linux kernel, call unit-announce35,
a small OSC application which notifies unit-daemon, when a joystick de-
vice (/dev/input/joy*) is connected to the computer. OSC server methods
within the daemon automatically mount the device and check its USB de-
vice name against a configuration file36 which can specify an OSC sending

25See Section 5.4 for a prototype robotcowboy performance patch
26The source code is available in Appendix A
27http://jackaudio.org/
28http://www.alsa-project.org/
29http://opensoundcontrol.org/
30See the configuration files in Appendix A
31http://www.cycling74.com/products/maxmsp
32http://supercollider.sourceforge.net/
33http://chuck.cs.princeton.edu/
34See Appendix A for the rule file
35Source code available in Appendix A
36See joystick name configuration file in Appendix A

57

Fig. 35: unit-control: opens/closes performance patches and acts as a routing
gateway for instrument and control events

address to associate with the joystick or gamepad. Once registered, each
device’s button and axis events are read within the event handling loop and
sent to the Pure Data control patch via OSC which then routes the events
to child performance patches. When a joystick or gamepad is removed, unit-
daemon is notified once again by udev and cleanly closes the device. Thus
multiple controller “plug and play” is handled by the the daemon software
while the specific input mappings and device addresses are defined within
each performance patch.

unit-daemon essentially solves the logistics problem of controlling multi-
ple software applications on a mobile device, allowing the performer to focus
on the performance and not the mechanics of cuing tracks and setting up
input devices. It eliminates the need for a graphical gui and requires only
one button for track and transport control which can be nearly anything:
a hacked keyboard controller, gamepad, specialized serial box, etc. By au-
tomating device setup and mapping within performance patches, the daemon
transforms complex digital devices into reliable “plug and play” instruments
that work when plugged in, much in the same manner as an electric gui-
tar when connected to an amplifier. By simply moving logistical software
needs away from the performance and into the setup phase, the musician can
now view his device as a responsive instrument, not a digital construct that

58

requires constant attention and care.

5.3.4 Interaction and Recording Affordances

Since the robotcowboy unit computer lacks a screen (see Section 5.2.1), audio
feedback is used to provide “eyes-free” operation [30]. The robotcowboy
software interaction is designed to confirm physical actions taken by a user
such as the insertion and removal of input devices and the loading of patches
within the play list. Since sound is the main output of the entire system,
sound files are played upon these events as well as when a problem occurs so
as to notify user of the current software actions and states. Devices, such as
the robotcowboy button box (see Section 4.2) can add a simple visual output
in the form of an led and the small motor-driven counter weights of “rumble
pad” gamepads can provide a tactile element. This feedback is essential as
the performer must know when the system is functioning correctly.

Recording musical performances can be a tiring and expensive task for
most musicians and the robotcowboy unit software remedies this problem by
directly recording stereo mix and/or separate track .wav files within Pure
Data whenever a performance takes place. A 1 GB compact flash card pro-
vides ample room and ease of transfer to a separate computer with a card
reader. The live performance can then be distributed directly to the audience
via compact disk or electronic means thus marking the recording’s musical
and temporal location by linking it to a definable tangible experience. If
every performance is recorded, a catalogue of improvisations and works can
be built up for later perusal and selection thus removing the pressing need to
record “for posterity”. Once again, a small freedom given by the software can
allow the performer to focus on the performance at hand since the “perfect”
rendition will never be missed.

5.4 Velocipede: A Prototype Performance Mapping

Velocipede is this thesis’ most developed prototype interface mapping/musical
score and is described in order to offer an example of a robotcowboy perfor-
mance instrument. The physical input device is a Playstation 2 Dualshock
game controller (Figure 37) connected through a USB adaptor and assigned
an OSC sending address at “/pd/devices/ps2black”. A Pure Data patch de-

59

Fig. 36: The Velocipede Pure Data patch

Fig. 37: The Velocipede Dualshock controller

60

Fig. 38: joystick: routes the button and axis events from a specified input
device OSC address

fines the software “score” — the instrumental and musical mappings of the
controller. The main patch (Figure 36) consists of:

• OSC transport control for cues sent to the “/pd/transport” address

• input and event routing subpatches

• tone control and sound generation for the Dualshock’s two analog
thumbsticks

• four rhythmic sequences triggered by the shoulder buttons

• a heartbeat metronome toggled via the start button or transport cue

The joystick object, ie. the box labeled “joystick /ps2/black”, (Figure
38) routes the button and axis events from the Dualshock and the axes and
button subpatches (Figures 39 and 40) route the required axis and button
events respectively to the mapping objects.

61

Fig. 39: axes: routes axes events

Fig. 40: buttons: routes button events

62

Fig. 41: heartbeat: plays a 4/4 heartbeat when the patch is active

The main musical content is defined within the stick, tonecontrol, and
shoulder button subpatches and heartbeat (Figure 41) provides a 4/4 beat
metronome when the patch is cued and running. These mappings are rep-
resented in Figures 42 and 46. Lstick (Figure 43) and Rstick map the x
and y axis of each stick to a “midi sawosc” additive synthesis sound object
on a single channel and the incoming axis values are scaled from -32767 to
32767 down to 0 to 30. Once within the MIDI range (0-127), these values are
added to offsets (30, 40, 61, 71) provided by tonecontrol (Figure 44) which
is toggled via the two buttons beneath the thumbsticks. As a result, the
center value of the left stick defaults to MIDI note 45 (30/2 + 30) and is
always 31 steps below the right stick whose value is 76 (30/2 + 61) — in
essence, they can be thought of as bass and treble. When the right thumb-
stick button is depressed, both values are increased by 10 to 55 and 86 and
the left thumbstick button returns them to 45 and 76, yielding two “keys” in
which the thumbsticks can be played. The pitches of each axis are mapped
in a right-hand Cartesian fashion with a maximum and minimum of +/-30
from the center value: the pitch increases in the top and right directions
and decreases towards bottom and left. Each set of voices, two for each
stick are then mapped to specific channels with the top/bottom axes panned
completely to the left and left/right axes panned to the right.

Each of the four shoulder buttons triggers a drum sequence with its own
subpatch. The L1 subpatch (Figure 45) triggers a simple 16 step sequence
by opening a spigot to the heartbeat metronome when it receives a ‘1’. The
16 beat sequence “1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0” plays the “pish” sound
object, a simple enveloped pink noise snare drum. 1’s are triggers while 0’s
are treated as rests and the sequence is reset back to its initial position when
the button is released. L1, L2, R1, and R2 have distinctive patterns and

63

Fig. 42: The thumbstick pitch mappings with default center values

Fig. 43: Lstick: scales the left thumbstick axis x and y values into MIDI
notes

64

Fig. 44: tonecontrol: changes the center MIDI note for each thumbstick when
either thumbstick button is pressed

timbral percussive sounds which can be triggered at will by the performer.
Holding down a button will loop its pattern and, if the sequences are triggered
asynchronously, interesting poly-rhythmic patterns emerge.

As a result of its design, Velocipede is a dynamic instrument that is both
easy to use, but hard to master. The fine degree of control on the thumbsticks
allows rather interesting microtonal expressive gestures and the panning of
the axes gives each thumb control over two separate voices: by moving the
stick diagonally to the lower right, the pitch in the left voice decreases while
the right voice increases. Two sticks yield four voices in total and an interest-
ing and meaningful relationship is drawn from the physical construction of
the thumbsticks themselves in that they are spring loaded to return to their
dead center position. If the sticks are moved and then “flicked” back to this
equilibrium state, the separates voices in either channel suddenly snap back
together in a return to stereo — both channels suddenly play the same tone
in phase thereby combining and doubling the acoustical loudness. The effect
is rather dramatic and when timed with the rhythmic progressions discussed
below can be quite effective.

By contrast, the shoulder buttons offer a simple one-to-one mapping for
the triggering of their sequences along with the main 4/4 heartbeat. By
simply holding some of them down, poly-rhythmic relations develop natu-
rally since each sequence is different and by utilizing the different timbral
aspects of the enveloped white noise, pink noise, sine and square waves the

65

Fig. 45: L1: Triggers a simple rhythmic drum sequence when the L1 button
is pressed

Fig. 46: The rhythmic control button mappings

66

performer can build an overall rhythmic gesture. Quick triggering can be
used to play each sound individually, although this is harder to do while ef-
fectively handling the thumbsticks at the same time. Currently the tempo is
rigidly defined within the patch and adding a tempo control mapping could
expand rhythmic possibility.

All in all, this prototype demonstrates how the robotcowboy unit ties
together the interface, mapping, and sound generation. Even a non-modified
gamepad can yield a useful and engaging instrument when mapped to sound
and musical gesture in a meaningful way. The ease of plugging in the specific
controller and the described interaction quite naturally strongly associates
the physical device with the patches sonic characteristics although this, of
course, can be changed from patch to patch. After developing, playing, and
performing with Velocipede, the author of this thesis can strongly assert that
this performance device and musical mappings are indeed an engaging and
exciting instrument to play.

67

6 Results

The robotcowboy unit system meets all of the design requirements set for it
in Section 5.1, providing a platform for digital instrumentality built on the
embodiment of action and sound. A computer worn on the body symbol-
ically allows for physical movement and emphasizes an integration of man
and machine in the spirit of the one-man band, a roaming musical cyborg
with “the bass note in his left ear”. By removing the forced interaction of
desktop computing the system frees much of the musician’s attention dur-
ing performance so he can express himself and interact with the audience.
The automation of logistical software tasks transforms the generic computing
device into a specific embedded instrumental platform that “just works”.

6.1 Mobility

Movement is restricted only by the audio cables (which can be eliminated
through a stereo wireless audio link) and the performer can easily dance,
gesticulate, and move out into the audience. A battery life of 3 to 4 hours
provides ample running time for long outdoor sets using a portable speaker
system. The only point of concern is the mechanical hard drive which can
be damaged due to excessive shock and will be replaced by a sold state flash
memory hard drive once the prices on these drives becomes feasible.

6.2 Performance

The stage aesthetics of the performances using unit become much more inti-
mate and exciting than comparable laptop performances since the musician
can move out into the audience directly. The physical action and musical
response are much more transparent when the audience can see what the
performer is doing. Devices can be developed for collaborative musical ex-
pression with the audience becoming part of the experience directly. There
is no austere separation, no physical screen in the way, and the performer is
now able to step down from the stage and get sweaty.

68

6.3 Instrumentality

The computer system itself is essentially a platform for the devices and soft-
ware which create the sound — it is the medium, not the message. The
message comes from the connection of physical interface and musical pa-
rameters which in turn is what makes an instrument. Since the physical
interface is no longer the sound producing body the computer is required to
transform the physical input to an amplifying system. If these mappings are
well designed, the relationship can become so well connected that the device
becomes the symbolic sound producer. By providing a generic basis for in-
strumentation and musical mapping, the physical devices and sound patches
used in the robotcowboy project are separated offering modular reuse and
an increase in overall performance and musical possibility.

6.4 Improvisation

Velocipede, as an example of a robotcowboy instrumental setup, does not
script any of the musical parameters beyond several simple drum patterns.
There is a great freedom of expression that can result in a vast number of
different performances. A performer can easily “mess up” and produce “bad
music” and this capability (or limitation, depending on viewpoint) for failure
is one of the basic requirements for an exciting live performance. The inherent
“jitter” of the human muscular and nervous system imparts an interesting
offset during live performance and, by the design of Velocipede’s mappings,
the lack of quantization allows for great musical possibility. The author has
performed live with the system and can guarantee its capability for what
many consider an engaging performance.

6.5 Reliability

As a result of extensive design, experimentation, and testing the entire system
“just works”. Flip the switch and, after booting up, a voice announces “unit
ready”. Plug in a performance device and a voice acknowledges that the
device is registered by the system and sending events. Press start and away
you go. The rugged hardware is designed for action and mobile use and
custom devices will be encased and shrink wrapped to ensure reliability.

69

6.6 Low Cost

A cost break down demonstrates that the entire system was built for a rela-
tively small amount:

Item Price (in USD)
Xybernaut MA V wearable computer $350
Roland UA-25 USB soundcard $250
USB hub $20
gamepads, USB adaptor, and other peripherals $100
operating system and software $0
Total: $720

$720 for a viable and extensive human-computer performance system is
far less expense then many of the projects listed in the previous works in
Section 3.2. In fact, this sum is enough to purchase a cheap laptop computer
and a majority of savings comes from the choice to use free, open source soft-
ware. As the system is expanded with more and more devices its cost will
increase through with the use of more expensive sensors and technology, but
the initial price so far is definitely affordable. By aiming at low-cost, the sys-
tem is affordable to those who pursue the post-digital aesthetic in its essence
– hackers and experimental musicians in the non-academic environment.

70

7 Future Work

There is more work to be done with the robotcowboy system. It will be taken
on the road where new performance devices and software mappings/patches
will be developed. The unit-daemon logistical software will be released as
open source code so as to allow others to experiment with musical device
and software automation. As new devices emerge, the robotcowboy unit
will be expanded to encompass their new musical and gestural possibilities.
Last, network performances will be developed for use with multiple computer
performers using the robotcowboy software.

Now that a stable system has been demonstrated, devices and perfor-
mance patches will be built and taken on the road. The robotcowboy project
does not aim to produce disposable prototypes, but instruments for long-term
use and the best way to develop and test such devices is in the field — the
stage and street. It is hoped that through demonstration, the embodied per-
formance paradigm of the robotcowboy unit will be taken more seriously in
the realm of live electronic music and digital instrumentation. In fact, new
devices and mappings may arise through the insights gained from extensive
use and experience.

In the spirit of free software, the logistical software daemon, unit-daemon,
will be released as open source and made freely available. Lessens learned
from this thesis’ implementation will be incorporated into a rewrite of the
essential core components in a cross platform environment such as Python
so as to make the system useful to users of Microsoft Windows and Apple
MacOS and the software will be packaged for easy installation. It is hoped
that other performers may experiment with, expand, and adapt the software
to enable their own embodied performance paradigms.

unit-daemon currently provides a platform for HID-based interfaces and
can be expanded to include Bluetooth and wireless devices. The Nintendo
Wiimote37 is a good example of a Bluetooth gaming device which is being re-
purposed for numerous musical and gestural applications. As new standards
of connectivity and interaction are developed, the system can be modified to
handle these new devices in order provide greater gestural and performance
possibility.

37http://wii.nintendo.com/controller.jsp

71

Since all of the inter-application communication within unit-daemon is
handled within OSC, the software elements can be separated onto different
machines over a network. A master/slave capability will be added to unit-
daemon so multiple computers can send attached device events to a central
audio processing station. Multiple wirelessly-networked wearable computers
can be used to create an mobile electronic performance band.

72

8 Conclusions

This thesis set out to develop a live human-computer musical performance
system, a technological one-man-band: the robotcowboy unit. unit offers
musicians a wearable computational platform on which to develop physical
controllers and software sound mappings, an adaptable electronic instrument
built upon mobility and embodiment. The wearer of the system does not need
anyone but his creativity and determination for an engaging performance.
Through careful design decisions, the robotcowboy unit is an enabling com-
putational platform as opposed to a laptop computer which subjugates much
of a musicians ability to perform. It is not the aim of this thesis to target
the laptop for ridicule, but to bring about a discussion to an alternative form
of electronic instrument that can address the problems of instrumentality
and mobility. It is hoped that the work of this thesis will inspire others to
experiment with and develop such systems of their own — to join the ranks
of the “robotcowboy”.

73

References

[1] Jamioki-purejoy: A game engine and instrument for electronically-
mediated musical improvisation. In Proceedings of NIME-07, New York,
NY, USA, June 2007.

[2] A unified toolkit for accessing human interface devices in pure data and
max/msp. In Proceedings of NIME-07, New York, NY, USA, June 2007.

[3] Laurie Anderson. Stories from the Nerve Bible: A Retrospective, 1972-
1992. Harper Perennial, New York, 1994.

[4] L. Ashline, William. The pariahs of sound: On the post-duchampian aes-
thetics of electro-acoustic improv. Contemporary Music Review, 22(4),
2003.

[5] F. Bebey. African Music: A People’s Art. Lawrence Hill, Westport, CT,
1975.

[6] Bert Bongers. An interview with sensorband. Computer Music Journal,
22(1), March 1998.

[7] Mark. A. Bromwich and Julie. A. Wilson. bodycoder: A sensor suit and
vocal performance mechanism for real-time performance. In Proceedings
of ICMC 1998, 1998.

[8] Mark. A. Bromwich and Julie. A. Wilson. Lifting bodies: Interactive
dance - finding new methodologies in the motifs prompted by new tech-
nology - a critique and progress report with particular reference to the
bodycoder system. 2001. Available from: http://www.geocities.com/
marekbuk/EDTlift.html [cited June 2007].

[9] Kim Cascone. The aesthetics of failure: ’post-digital’ tendencies in con-
temporary computer music. Computer Music Journal, 24(4), Winter
2000.

[10] John Croft. Theses on liveness. Organized Sound, 12(1):59–66, April
2007.

[11] G. Deleuze and F. Guatarii. A Thousand Plateaus: Capitalism and
Schizophrenia, page 474. University of Minnesota Press, Minneapolis,
MN, 1987.

[12] Maywa Denki. Tsukuba music. 2007. Available from: http://www.

maywadenki.com/concepts/what tsukuba.html [cited June 2007].

74

http://www.geocities.com/marekbuk/EDTlift.html
http://www.geocities.com/marekbuk/EDTlift.html
http://www.maywadenki.com/concepts/what_tsukuba.html
http://www.maywadenki.com/concepts/what_tsukuba.html

[13] Martin Dixon. Echo’s body - play and representation in interactive music
software. Contemporary Music Review, 25(1/2):17–25, Febuary/April
2006.

[14] Simon. Emmerson. Acoustic/electroacoustic: the relationship with in-
struments. Journal of New Music Research, 27(1-2):146–64, 1998.

[15] Joanne Favilla, Stuart & Cannon. Fetish: Bent leathers palpable, vis-
ceral instruments and grainger. Contemporary Music Review, 25(1/2),
Febuary/April 2006.

[16] Terrence Fong, Illah Nourbakhsh, and Kerstin Dautenhahn. A survey of
socially interactive robots. Robots, Robotics and Autonomous Systems,
42(3-4):143–166, March 2000.

[17] L. Gaye, R. Mazé, and L Holmquist. Sonic city: The urban environment
as a musical interface. In Proceedings of NIME-03, Montreal, Canada,
2003.

[18] RoseLee Goldberg. Performance Art: From Futurism to the Present,
pages 7–9. World of Art. Thames & Hudson, third edition, 2001.

[19] Chris Hables Gray and Steven Mentor. The Cyborg Handbook. Rout-
ledge, New York, 1995.

[20] Ian Holmes. Electronic and Experimental Music, page 23. Routledge,
second edition, 2002.

[21] E. Huhtamo. Cybernation to Interaction: A Contribution to an Archeal-
ogy of Interactivity, pages 96–100. MIT Press, Cambridge, MA, 1999.

[22] A. R. Jensenius, R. Koehly, and M. M. Wanderly. Building low-cost
music controllers. In Proceedings of Computer Music Modeling and Re-
trieval 2005, 2005.

[23] Silvija Jestrovic. The performer and the machine: Some aspects
of laurie anderson’s stage work. Body, Space, Technology Journal,
1(1), 2000. Available from: http://people.brunel.ac.uk/bst/1no1/
SILVIJAJESTROVIC.htm [cited June 2007].

[24] Sergi Jordá. Afasia: The ultimate homeric one-man-multimedia-band.
In Proceedings of NIME-02, Dublin, Ireland, May 2002.

[25] Sergi Jordá. Digital instruments and players: Part i efficiency and
apprenticeship. In Proceedings of NIME-04, Hamamatsu, Japan, 2004.

75

http://people.brunel.ac.uk/bst/1no1/SILVIJAJESTROVIC.htm
http://people.brunel.ac.uk/bst/1no1/SILVIJAJESTROVIC.htm

[26] Sawako Kato. Digital media, and sound art. In Proceedings of WFAE
Symposium 2003, Australia, 2003.

[27] Al Keltz. A direct box can be in-di-spensible. Available from: http:

//www.whirlwindusa.com/ftp/tech/tech02.pdf [cited June 2007].

[28] R. B. Knapp and H. S. Lusted. A bioelectric controller for computer
music applications. Computer Music Journal, 14(1):42–47, 1990.

[29] Volker Krefeld. Biography of michel waisvisz. 2004. Available from:
http://www.crackle.org/short%20biography.htm [cited May 2007].

[30] J. Lumsden and S. Brewster. A paradigm shift: Alternative interac-
tion techniques for use with mobile and wearable devices. In The 13th
Annual IBM Centers for Advanced Studies Conference CASCON ′2003,
Markham, Ontario, Canada, oct 2003.

[31] Akitsugu Maeybayashi. Home page. 2007. Available from: http://

www2.gol.com/users/m8 [cited June 2007].

[32] Akexei Monroe. Ice on the circuits/coldness as crisis: The re-
subordination of laptop sound. Contemporary Music Review, 22(4),
2003.

[33] Yoichi Nagashima. Biosensorfusion: New interfaces for interactive mul-
timedia art. In in Proceedings of International Computer Music Con-
ference 1998, 1998.

[34] K. Nishimoto, T. Maekawa, Y. Tada, K. Mase, and R. Nakatsu. Net-
worked wearable musical instruments will bring a new musical culture.
In Proceedings of International Wearable Computer Symposium 2001,
Zurich, Switzerland, 2001.

[35] R. Post, M. Orth, E. Cooper, S. Strickon, J. Smith, and T. Machover.
Musical jacket project. Available from: http://www.media.mit.edu/

hyperins/levis/ [cited June 2007].

[36] Miller Puckette. Combining event and signal processing in the
max graphical programming enviornment. Computer Music Journal,
15(3):66–77, 1991.

[37] Miller Puckette. Pure data: another integrated computer music env-
iornment. In Proceedings of the Second Intercollege Computer Music
Concerts, pages 37–41, Tachikawa, Japan, 1996.

76

http://www.whirlwindusa.com/ftp/tech/tech02.pdf
http://www.whirlwindusa.com/ftp/tech/tech02.pdf
http://www.crackle.org/short%20biography.htm
http://www2.gol.com/users/m8
http://www2.gol.com/users/m8
http://www.media.mit.edu/hyperins/levis/
http://www.media.mit.edu/hyperins/levis/

[38] Hal Rammel. Joe barrick’s one-man band: A history of the pi-
atarbajo and other one-man bands. Musical Traditions, (098),
September 2002. Originally published in Musical Traditions No 8
Early 1990. Available from: http://www.mustrad.org.uk/articles/

barrick.htm [cited May 2007].

[39] Pedro Rebelo. The haptic sensation and instrumental transgression.
Contemporary Music Review, 25(1/2), Febuary/April 2006.

[40] John Richards. 32kg: Performance systems for a post-digital age. In
Proceedings of NIME-06, Paris, France, 2006.

[41] Joel Ryan. Some remarks on musical instrument design at steim. Con-
temporary Music Review, 6(1):3–17, April 2007.

[42] David Z. Salz. The art of interaction: Interactivity, performativity, and
computers. The Journal of Aesthetics and Art Criticism, 55(2):117–127,
Spring 1997.

[43] Caleb Stuart. The object of performance: Aural performativity in con-
temporary laptop music. Contemporary Music Review, 22(4), 2003.

[44] Atau Tanaka. Musical performance practice on sensor-based instru-
ments. In M. Wanderley and M. Battier, editors, in Trends in Gestu-
ral Control of Music, pages 389–405, Paris, France, 2000. Institut de
Recherche et Coordination Acoustique MusiqueCentre Pompidou.

[45] Todd Winkler. Making motion musical: Gesture mapping strategies
for interactive computer music. In Proceedings of ICMC 1995, Banff,
Canada, September 1995.

[46] Charles K. Wolfe. The grand ole opry: When the skillet-lickers came
to nashville. Old Time Music, (2):102, 1972. Reprinted from original
newspaper.

77

http://www.mustrad.org.uk/articles/barrick.htm
http://www.mustrad.org.uk/articles/barrick.htm

List of Figures

1 The author, a musical cyborg wearing the robotcowboy system 1

2 Elizabethan clown Richard Tarlton playing the pipe and tabor,
1400’s . 16

3 Example of a modern ”Stumpf Fiddle”, 2006 17

4 A tap drummer and his kit, 1960’s 17

5 Jesse Fuller, 1950’s . 19

6 Fate Norris, late 1920’s or early 30’s 20

7 Joe Barrick and his piatarbajo, 1980’s 21

8 Rhasaan Roland Kirk, 1970’s 22

9 The Hands, late 1980’s, Michel Waisviz 23

10 Maywa Denki Pres. Nobumichi Tosa and 2 Mechanical Instru-
ments, early 2000’s . 24

11 Marcel.ĺı Antúnez and his sensor exoskeleton in Afasia, 1998 . 24

12 Maebayashi’s Sonic Interface in use 29

13 A BioMuse . 30

14 Atau Tanaka performing with a BioMuse 31

15 The MIT Musical Jacket, 2000 32

16 The CosTune jacket varient, 2001 32

17 The SensorBand Soundnet, 1990s 34

18 Laurie Anderson, 2000 . 35

78

19 The robotcowboy helemt . 36

20 Mori’s ucanny valley . 38

21 debut, the first performance with the robotcowboy helmet, 2006 38

22 recharge, an homage to Paik’s Video Buddha, 2006 39

23 midi karaoke, a living karaoke machine, 2006 39

24 The robotcowboy button box, 2006 41

25 The robotcowboy unit main hardware 45

26 The robotcowboy unit hardware flowchart 45

27 The robotcowboy unit as worn on the body 47

28 The author demonstrating the physical embodiment of the
system . 49

29 Example robotcowboy unit peripheral devices 50

30 PureJoy : a live sampling and looping system [1] 51

31 Cheapstick : an affordable positional controller [22] 52

32 The robotcowboy unit software flowchart 54

33 An example Pure Data patch 55

34 unit-daemon flowchart, see unit-daemon.cpp in Appendix A . 56

35 unit-control: opens/closes performance patches and acts as a
routing gateway for instrument and control events 58

36 The Velocipede Pure Data patch 60

37 The Velocipede Dualshock controller 60

79

38 joystick: routes the button and axis events from a specified
input device OSC address . 61

39 axes: routes axes events . 62

40 buttons: routes button events 62

41 heartbeat: plays a 4/4 heartbeat when the patch is active . . . 63

42 The thumbstick pitch mappings with default center values . . 64

43 Lstick: scales the left thumbstick axis x and y values into MIDI
notes . 64

44 tonecontrol: changes the center MIDI note for each thumbstick
when either thumbstick button is pressed 65

45 L1: Triggers a simple rhythmic drum sequence when the L1
button is pressed . 66

46 The rhythmic control button mappings 66

80

A unit-daemon Source Code

Although this scope of this thesis does not include a detailed description and
analysis of the software system, the following C++ source code is included
to stimulate further development and document the programming experience
gained by the author over the course of the project.

unit-daemon runs in Linux and requires the following libraries and applica-
tions: liblo (lightweight osc library), the Jack realtime audio daemon, Pure
Data, aconnect, and alsaplayer with the Jack and text extensions.

• unit-daemon sources

1. unit-daemon: main setup and loop

2. Application: application handling class

3. Button Box: robotcowboy button box class

4. Config: configuration file class

5. Devices: input device handling class

6. Joystick Device: Linux joystick class

7. Osc Server: Open Sound Control server class

8. Playlist: circular play list class

9. Serial Device: serial device handling template class

10. Sound Feedback: sound file playback class

11. Unit: core application handling class

• Configuration Files

1. unit-daemon configuration

2. play list

3. joystick name to OSC address configuration

• unit-announce source

• unit-daemon udev rules

81

/* main.cpp

 unit-daemon

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#include <iostream>

#include "Unit.h"

#include "Devices.h"

#include "Button_Box.h"

#include "Playlist.h"

#include "Config.h"

using namespace std;

/* Server function declarations */

void setup_server(string port);

void server_error_callback(int num, const char *msg, const char *path);

int generic_handler(const char *path, const char *types, lo_arg **argv,

 int argc, void *data, void *user_data);

int insert_handler(const char *path, const char *types, lo_arg **argv,

 int argc, void *data, void *user_data);

int remove_handler(const char *path, const char *types, lo_arg **argv,

 int argc, void *data, void *user_data);

int serial_device_handler(const char *path, const char *types, lo_arg **argv,

 int argc, void *data, void *user_data);

int button_box_handler(const char *path, const char *types, lo_arg **argv,

 int argc, void *data, void *user_data);

/* Signal exit handler */

void onExit(int nSig);

/* Classes */

Osc_Server server;

Devices input_devices;

Button_Box button_box;

Config config("config.txt");

Playlist playlist("playlist.txt");

Sound_Feedback sounds;

/* Terminal output */

ofstream filestr;

lo_address osc_send; // osc send address to pd

bool done = false; // is the loop running?

// mabey add commandline options

int main(int argc, char **argv)

{

 if(config.get("log") == "true")

 {

 // redirect cout to file

 streambuf *psbuf;

 filestr.open ("log.txt");

 psbuf = filestr.rdbuf();

 cout.rdbuf(psbuf);

 }

 cout << "******************" << endl;

 cout << "*** Unit Begin ***" << endl;

 cout << "******************" << endl;

 // load files

 cout << endl << "*** Load Config ***" << endl;

 if(config.load() < 0)

 return -1;

 cout << endl << "*** Load Playlist ***" << endl;

 if(playlist.load() < 0)

 return -1;

 // start server

 cout << endl << "*** OSC Server Begin ***" << endl;

 cout << "OSC Server Starting up ..." << endl;

 setup_server(config.get("server_port"));

 server.startListening();

 cout << "... Server running" << endl;

 // start jack

 Unit my_unit;

 cout << endl << "*** Start Jack ***" << endl;

 if(my_unit.startJack(config.get("jack_command")) < 0)

 {

 cout << "Jack failed to start ... exiting" << endl;

 return EXIT_FAILURE;

 }

 // salutation

 sleep(1);

 sounds.play(config.get("sound_folder")+"/you_are_robotcowboy.wav");

 // setup devices

 cout << endl << "*** Setup Devices ***" << endl;

 input_devices.config("joy_names.txt");

 input_devices.setupOSC((char *) config.get("send_addr").c_str(), (char *) config.get("send_port").c_str(),

"/pd/devices/");

 button_box.setBaud((char *) config.get("baud").c_str());

 button_box.setupOSC((char *) config.get("send_addr").c_str(), (char *) config.get("send_port").c_str(),

"/pd/transport");

 if(button_box.openDev((char *) config.get("button_box").c_str(), (char *) config.get("baud").c_str()) == 0)

 cout << "Button Box opened at " << config.get("button_box") << endl;

 input_devices.setup();

 if(config.get("debug") == "true")

 {

 button_box.printEvents(true);

 input_devices.printEvents(true);

 }

 // open pd with control patch

 cout << endl << "*** Start Pd ***" << endl;

 my_unit.startPd(config.get("puredata_command"));

 // open first patch

 sleep(3);

 osc_send = lo_address_new((char *) config.get("send_addr").c_str(), (char *) config.get("send_port").c_str

());

 lo_send(osc_send, "/pd/patch/open", "ss", (char *) playlist.file().c_str(), (char *) playlist.path().c_str

());

 // connect midi

 my_unit.aconnect("UA-25", "Pure Data");

 // ready sound

 sounds.play(config.get("sound_folder")+"/unit_ready.wav");

 // signal handling

 signal(SIGTERM, onExit); // terminate

 signal(SIGQUIT, onExit); // quit

 signal(SIGINT, onExit); // interrupt

 // program main loop

 while (!done)

 {

 input_devices.listen();

 button_box.listen();

 // is there a load?

 if(button_box.check() > 0)

 {

 sounds.play(config.get("sound_folder")+"/bang.wav");

 lo_send(osc_send, "/pd/patch/close", "ss", (char *) playlist.file().c_str(), (char *) playlist.path

().c_str());

 playlist.next();

 lo_send(osc_send, "/pd/patch/open", "ss", (char *) playlist.file().c_str(), (char *) playlist.path

().c_str());

 }

 usleep(10); // debounce ... important!

 } // end main loop

 cout << endl << "*** Unit Shut Down ***" << endl;

 // end sound

 sounds.play(config.get("sound_folder")+"/unit_signing_off.wav");

 sleep(3);

 cout << endl << "Shutting down devices ..." << endl;

 // input_devices.cleanup();

 button_box.closeDev();

 cout << "... devices shut down" << endl;

 cout << endl << "Stopping Pure Data and Jack ..." << endl;

 my_unit.stopPd();

 cout << "... Pure Data stopped" << endl;

 my_unit.stopJack();

 cout << "... Jack stopped" << endl;

 cout << endl << "Stopping Osc Server ..." << endl;

 server.stopListening();

 cout << "... server stopped" << endl;

 // wait for all children just in case

 my_unit.cleanup();

 cout << endl << "*** Unit Sucessfully Shutdown ***" << endl;

 if(config.get("log") == "true")

 filestr.close();

 return EXIT_SUCCESS;

}

void setup_server(string port)

{

 server.setup(port.c_str(), server_error_callback);

 // add address handling callbacks

 server.addRecvMethod(NULL, NULL, generic_handler);

 server.addRecvMethod("/unit/device/sdl/start", "s", insert_handler);

 server.addRecvMethod("/unit/device/sdl/stop", "s", remove_handler);

 //server.addRecvMethod("/unit/device/serial", "s", serial_device_handler);

 server.addRecvMethod("/unit/button_box", "s", button_box_handler);

}

void server_error_callback(int num, const char *msg, const char *path)

{

 cout << "unit-daemon server error " << endl;//<< num << " in path "

 // << path << ": " << msg << endl;

}

int generic_handler(const char *path, const char *types, lo_arg **argv,

 int argc, void *data, void *user_data)

{

 cout << "Message recieved: " << path;

 for (int i = 0; i < argc; i++)

 {

 cout << " ";

 //printf("arg %d '%c' ", i, types[i]);

 lo_arg_pp((lo_type) types[i], argv[i]);

 }

 cout << endl;

 return 1;

}

/* add and remove devices */

int insert_handler(const char *path, const char *types, lo_arg **argv,

 int argc, void *data, void *user_data)

{

 sounds.play(config.get("sound_folder")+"/oo.wav");

 input_devices.joyRegister((string) &argv[0]->s);

 //input_devices.printMap();

 return 1;

}

int remove_handler(const char *path, const char *types, lo_arg **argv,

 int argc, void *data, void *user_data)

{

 sounds.play(config.get("sound_folder")+"/aw.wav");

 input_devices.joyUnregister((string) &argv[0]->s);

 //input_devices.printMap();

 return 1;

}

int serial_device_handler(const char *path, const char *types, lo_arg **argv,

 int argc, void *data, void *user_data)

{

 return 1;

}

int button_box_handler(const char *path, const char *types, lo_arg **argv,

 int argc, void *data, void *user_data)

{

 unsigned char send = argv[0]->s;

 cout << " sent \"" << send << "\"" << endl;

 button_box.send(&send, 1);

 return 1;

}

// handle exit signals from OS gracefully

void onExit(int nSig)

{

 done = true;

 cout << " Signal Caught. Exiting ..." << endl;

}

/* Application.h

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#ifndef APPLICATION_H

#define APPLICATION_H

#include <unistd.h>

#include <iostream>

#include <fstream>

#include <string>

#include <signal.h>

#include <errno.h>

using namespace std;

/** \class Application

 \brief Application handling class

 Starts an app with a commandline, closes with signals, and checks running status

*/

class Application

{

 public:

 Application() {};

 /**

 \brief Constructor

 \param cmdline_ cmdline string to launch app

 Ex: cmdline_ = "ls -l";

 */

 Application(string cmdline_);

 virtual ~Application();

 /**

 \brief Launch the application

 runs the application cmdline specified in the constructor

 or setApp

 returns 0 on success or -1 on error

 */

 int launch();

 /**

 \brief Send a Signal to the running application

 \param signal the signal to send (see signal.h)

 i.e. SIGINT, SIGTERM, SIGQUIT, SIGWAIT, etc

 returns 0 on success and -1 on error

 Note: if application is not running, no signal will be

 sent and sendSignal will return 0

 */

 int sendSignal(int signal);

 /**

 \brief Get the status of the running application

 returns a char denoting the current status of the app:

 from the function:

 N Process is not running

 from man ps:

 D Uninterruptible sleep (usually IO)

 R Running or runnable (on run queue)

 S Interruptible sleep (waiting for an event to complete)

 T Stopped, either by a job control signal or because it is being traced.

 W paging (not valid since the 2.6.xx kernel)

 X dead (should never be seen)

 Z Defunct ("zombie") process, terminated but not reaped by its parent.

 returns -1 on error

 */

 char status();

 /**

 \brief Set a new commandline

 \param cmdline_ cmdline string to launch app

 Ex: cmdline_ = "ls -l";

 Note: DO NOT call this if the application is running,

 as the pid will be lost and you will lose control

 of the app

 */

 void setApp(string cmdline_);

 /**

 \brief Get the pid of the application

 returns a pid > 0 if the app is running or 0 if not running

 */

 inline int getPid() {return pid;}

 /**

 \brief Get the applications name

 returns the name (first command line arg)

 */

 inline string getName() {return cmdline[0];}

 protected:

 private:

 // application info

 char *cmdline[20]; // cmdline args that launched app (20 args should be enough)

 pid_t pid; // launched apps pid, 0 if not launched

};

#endif // APPLICATION_H

/* Application.cpp

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#include "Application.h"

Application::Application(string cmdline_)

{

 // strip cmdline string into a char array

 cmdline[0] = strtok((char *) cmdline_.c_str(), " ");

 for(int p = 1; p < 20 && (cmdline[p] = strtok(NULL, " ")) != NULL; p++);

 pid = 0;

}

Application::~Application()

{

 //dtor

}

/* launches and application using the cmdline string

 return 0 on success or -1 on error */

int Application::launch()

{

 // virt fork off the parent

	 pid_t pid_ = vfork();

 // bad pid, so exit with error

	 if(pid_ < 0)

		 return -1; // error

	// parent

	 if(pid_ > 0)

	{

	 // fork worked

 pid = pid_;

	 // check status just in case

 if(status() < 0)

 {

 pid = 0;

 return -1;

 }

		 return 0; // ok

	 }

 // now running as child proc

 // launch the app with the cmdline

	 execvp(cmdline[0], cmdline);

 return 0; // ok

}

/* send a signal to the application (SIGTERM, SIGINT, ...)

 returns 0 on success or -1 on failure */

int Application::sendSignal(int signal)

{

 // valid pid?

 if(pid <= 0)

 return -1; // error

 if(kill(pid, signal) != 0)

 {

 cout << "Application: '" << cmdline[0] << "' sendSignal failed: "

 << errno << " " << strerror(errno) << endl;

 return -1; // error

 }

 return 0; // ok

}

/* get current status of the application

 returns status char on success and -1 on nonexisting process */

char Application::status()

{

 FILE *fpipe;

 char command[20];

 char line[100];

 sprintf(command, "ps %d", pid);

 if(!(fpipe = (FILE*) popen(command, "r")))

 {

 cout << "Application: ps failed to get status" << endl;

 return (char) -1; // error

 }

 if(fgets(line, sizeof line, fpipe) == NULL)

 return (char) -1;

 if(fgets(line, sizeof line, fpipe) == NULL)

 {

 pid = 0;

 return 'N'; // no second line, so app must not be running

 }

 // strip out status char from ps stdout

 // second line, 3rd word, 1st char

 strtok(line, " "); // 1st word

 strtok(NULL, " "); // second word

 char *status = strtok(NULL, " ");

 return status[0];

}

/* set a new commandline */

void Application::setApp(string cmdline_)

{

 // strip cmdline string into a char array

 cmdline[0] = strtok((char *) cmdline_.c_str(), " ");

 for(int p = 1; p < 20 && (cmdline[p] = strtok(NULL, " ")) != NULL; p++);

 pid = 0;

}

/* Button_Box.h

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#ifndef BUTTON_BOX_H

#define BUTTON_BOX_H

#include <time.h>

#include <sys/time.h>

#include "Serial_Device.h"

/** \class Button_Box

 \brief button_box class inherited from Serial_Device */

class Button_Box: public Serial_Device

{

 public:

 Button_Box();

 virtual ~Button_Box();

 /** /brief Checks for button events and sends cue

 Checks the buffer's first char for 'D' and 'U',

 keeps a timestamp between 'D' and 'U' events

 and sends an OSC message on a load:

 - 'load' timestmap >= 2

 - 'cue' timestamp < 2

 returns 0 on a load and -1 on cue or nothing read

 Note:: setupOSC must be called to setup OSC addr info

 */

 int check();

 /**

 \brief Print all of the events?

 \param yesno true = print all button events

 */

 void inline printEvents(bool yesno) {print_events = yesno;};

 protected:

 private:

 time_t timestamp; // timestamp of last 'D' event

 bool print_events; // printing control

};

#endif // BUTTON_BOX_H

/* Button_Box.cpp

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#include "Button_Box.h"

Button_Box::Button_Box()

{

 //timestamp = 0;

}

Button_Box::~Button_Box()

{

 //dtor

}

int Button_Box::check()

{

 // device is not open, so dont do anything

 if(dev_fd == -1)

 return 0;

 if(num_bytes > 0) // read anything?

 {

 // box only sends 1 char

 if(buffer[0] == 'D') // button down

 {

 time(×tamp);

 if(print_events) // print event info

 cout << "Button_Box: recieved \"" << buffer[0] << "\"" << endl;

 }

 else if(buffer[0] == 'U') // button up

 {

 time_t now;

 time(&now);

 double t = difftime(now, timestamp);

 if(t >= 2) // send a load event

 {

 cout << "Button_Box: Load!" << endl;

 return 1;

 }

 else // send a cue event

 {

 if(lo_send(osc_server, addr, "s", "cue") == -1)

 if(print_events)

 cout << "OSC error" << lo_address_errno(osc_server)

 << lo_address_errstr(osc_server) << endl;

 cout << "Button_Box: Cue!" << endl;

 }

 if(print_events) // print event info

 cout << "Button_Box: recieved \"" << buffer[0] << "\" " << t << endl;

 }

 }

 return 0; // nothing done or cue

}

/* Config.h

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#ifndef CONFIG_H

#define CONFIG_H

#include <iostream>

#include <fstream>

#include <sstream>

#include <string>

#include <map>

using namespace std;

/** \class Config

 \brief Class to read config file and retrieve config keys */

class Config

{

 public:

 /** \brief Constructor

 \param filename filename of the configfile to open, including path

 */

 Config(char *filename_);

 virtual ~Config();

 /** \brief Load configuration from file

 Ignores lines beginning with '#',

 format is 'key' 'value' with a

 space in between

 ex.

 # server address comment

 server_addr 127.0.0.1

 returns 0 on success or -1 if the file cannot be loaded (i.e. found)

 Note: very dumb, does not check for bad keys/vals so config file

 must be correct

 */

 int load();

 /** \brief Loads joystick name mapping configuration

 Ignores lines beginning with '#',

 format is 'usb dev name' 'OSC device address' with a

 space in between

 ex.

 # saitek events sent to "/target address/saitek"

 "Saitek P990 Dual Analog Pad" saitek

 returns 0 on success or -1 if the file cannot be loaded (i.e. found)

 Note: very dumb, does not check for bad keys/vals so config file

 must be correct

 */

 int loadJoy();

 /** \brief Get a configuration value

 \param key key to fetch value for

 ex. get("server_addr"); returns the value for the server_addr

 returns value or "" (empty string) if key was not found

 Note: see configuration for keys / values

 */

 string get(char* key);

 /** \brief Prints the current configuration keys and values */

 void print();

 /** \brief Returns the config file filename */

 inline char *name() {return filename;};

 protected:

 private:

 char *filename; // Config filename

 map<string, string> config_map; // map of config values

};

#endif // CONFIG_H

/* Config.cpp

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#include "Config.h"

Config::Config(char *filename_)

{

 filename = filename_;

}

Config::~Config()

{

 //dtor

}

int Config::load()

{

 ifstream fin(filename, ios::in);

 if(!fin) // open failed

 {

 cout << "Config: error opening file \"" << filename << "\"" << endl;

 return -1;

 }

 cout << "Config: loading " << filename << endl;

 string s;

 while(getline(fin, s))

 {

 if(s.size() >= 1 && s[0] == '#') {}

 // cout << " ignoring comment: " << s << endl;

 else if(s.size() >= 2)

 {

 istringstream ss(s);

 string key, val;

 ss >> key;

 ss.ignore(); // remove preceeding space

 getline(ss, val);

 cout << " key: \"" << key << "\" val: \"" << val << "\"" << endl;

 config_map.insert(make_pair(key, val));

 }

 }

 cout << "Config: ready" << endl;

 fin.close();

 return 0;

}

int Config::loadJoy()

{

 ifstream fin(filename, ios::in);

 if(!fin) // open failed

 {

 cout << "Config: error opening file \"" << filename << "\"" << endl;

 return -1;

 }

 cout << "Config: loading " << filename << endl;

 string s;

 while(getline(fin, s))

 {

 if(s.size() >= 1 && s[0] == '#') {}

 // cout << " ignoring comment: " << s << endl;

 else if(s.size() >= 2)

 {

 string key, val;

 key = s.substr(s.find_first_of("\"")+1, s.find_last_of("\"")-1);

 val = s.substr(s.find_last_of("\"")+2, s.size());

 cout << " key: \"" << key << "\" val: \"" << val << "\"" << endl;

 config_map.insert(make_pair(key, val));

 }

 }

 cout << "Config: ready" << endl;

 fin.close();

 return 0;

}

string Config::get(char* key)

{

 return config_map[key];

}

void Config::print()

{

 int i = 0;

 map<string, string>::iterator c;

 for(c = config_map.begin(); c != config_map.end(); c++)

 {

 cout << i << " key: " << c->first << " val: " << c->second << endl;

 i++;

 }

}

/* Devices.h

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#ifndef DEVICES_H

#define DEVICES_H

#include <string>

#include <sstream>

#include <map>

#include <vector>

#include "Config.h"

#include "Joystick_Device.h"

#include "Serial_Device.h"

class Devices

{

 public:

 Devices();

 virtual ~Devices();

 /** \brief Setup the OSC connection info

 \param ip_ ip address to OSC server to send to, NULL sets localhost "127.0.0.1"

 \param port_ port number of OSC server, ex. "4000"

 \param osc_addr_ OSC address to send to, ex. "/test/serial/1"

 */

 void setupOSC(char *ip_, char *port_, char *osc_addr_);

 /** \brief Opens all currently plugged in devices

 Called to init existing devices before starting event listening

 */

 void setup();

 /** \brief Loads the OSC address config file

 \param file filename to the config file

 Ignores lines beginning with '#',

 format is 'usb dev name' 'OSC device address' with a

 space in between

 ex.

 # saitek events sent to "/target address/saitek"

 "Saitek P990 Dual Analog Pad" saitek

 returns 0 on success or -1 if the file cannot be loaded (i.e. found)

 Note: very dumb, does not check for bad keys/vals so config file

 must be correct

 */

 int config(char *file);

 /** \brief Closes each joystick and removes it from the list */

 void cleanup();

 /** \brief Toggles debug event output

 \param yesno true = prints all button, axes event information

 */

 void printEvents(bool yesno);

 /** \brief Checks for and sends device events */

 void listen();

 /** \brief Adds joystick to active list and opens it

 \param dev name of the device, ie. '/dev/input/js0'

 */

 int joyRegister(string dev);

 /** \brief Removes joystick to active list and closes it

 \param dev name of the device, ie. '/dev/input/js0'

 */

 int joyUnregister(string dev);

 /** \brief debug print of active device list */

 void printMap();

 protected:

 private:

 char *ip; // ip to send device events to

 char *port; // port

 char *osc_addr; // base OSC address to send to, device addr is concatenated

 map<string, Joystick_Device> joy_devices; // active device list

 vector<Serial_Device> serial_devices; // serial device list

 Config *name_mappings; // device name -> OSC address config file

};

#endif // DEVICES_H

/* Devices.cpp

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#include "Devices.h"

Devices::Devices()

{

 ip = NULL;

 port = NULL;

 osc_addr = NULL;

 name_mappings = NULL;

}

Devices::~Devices()

{

 //dtor

}

void Devices::setupOSC(char *ip_, char *port_, char *osc_addr_)

{

 ip = ip_;

 port = port_;

 osc_addr = osc_addr_;

}

/* Opens all exisiting linux joystick devices */

void Devices::setup()

{

 FILE *fpipe;

 char line[100];

 // call ls on the /dev/input dir to get available joysticks

 if(!(fpipe = (FILE*) popen("ls /dev/input | grep js*", "r")))

 {

 cout << "Devices: ls /dev/input failed run" << endl;

 return; // error

 }

 while(fgets(line, sizeof line, fpipe) != NULL)

 {

 string temp = line;

 // grab joy name

 istringstream ss(temp);

 string dev;

 ss >> dev;

 joyRegister(dev);

 }

 return;

}

int Devices::config(char *file)

{

 name_mappings = new Config(file);

 // load the config file

 if(name_mappings->loadJoy() < 0)

 return -1; // bad file

 return 0;

}

/* Close each joystick and remove it from the map */

void Devices::cleanup()

{

 if(joy_devices.size() > 0)

 {

 map<string, Joystick_Device>::iterator c;

 for(c = joy_devices.begin(); c != joy_devices.end(); c++)

 {

 c->second.closeDev();

 joy_devices.erase(c);

 }

 }

}

/* Print the joystick events yes/no> */

void Devices::printEvents(bool yesno)

{

 if(joy_devices.size() > 0)

 {

 // print joystick events (buttons, axes, etc)

 map<string, Joystick_Device>::iterator c;

 for(c = joy_devices.begin(); c != joy_devices.end(); c++)

 c->second.printEvents(yesno);

 }

}

/* Listen for joy events and send osc */

void Devices::listen()

{

 if(joy_devices.size() > 0)

 {

 // check for events

 map<string, Joystick_Device>::iterator c;

 for(c = joy_devices.begin(); c != joy_devices.end(); c++)

 c->second.listen();

 }

}

int Devices::joyRegister(string dev)

{

 Joystick_Device new_device;

 // try opening the js

 if(new_device.openDev((char *) dev.c_str()) < 0) // bad?

 return -1; // bad!

 string addr;

 // assign osc addr based on name or device name

 if(name_mappings != NULL)

 {

 string name = name_mappings->get(new_device.name());

 cout << "[" << name << "]" << endl;

 if(name != ""){

 cout << "inside" << endl;

 addr = osc_addr + name;}

 else

 addr = osc_addr + dev;

 }

 else

 addr = osc_addr + dev;

 // setup osc

 new_device.setupOSC(ip, port, (char *) addr.c_str());

 cout << "Joystick registered: \"" << dev << "\"" << endl;

 new_device.printInfo();

 joy_devices.insert(make_pair(dev, new_device));

 return 0;

}

int Devices::joyUnregister(string dev)

{

 // no devices?

 if(joy_devices.size() == 0)

 {

 cout << "Joystick map is empty so \"" << dev << "\" cannot be unregistered" << endl;

 return 0;

 }

 map<string, Joystick_Device>::iterator c = joy_devices.find(dev);

 // didnt find it?

 if(c == joy_devices.end())

 {

 cout << "Joystick \"" << dev << "\" was not found, so it cannot be unregistered" << endl;

 return 0;

 }

 c->second.closeDev();

 joy_devices.erase(c);

 cout << "Joystick \"" << dev << "\" has been unregistered" << endl;

 return 0;

}

void Devices::printMap()

{

 int i = 0;

 map<string, Joystick_Device>::iterator c;

 for(c = joy_devices.begin(); c != joy_devices.end(); c++)

 {

 cout << i << " key: " << c->first << " val: " << c->second.name() << endl;

 i++;

 }

}

/* Joystick_Devices.h

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#ifndef JOYSTICK_DEVICE_H

#define JOYSTICK_DEVICE_H

#include <sys/ioctl.h>

#include <sys/time.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <stdlib.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include <errno.h>

#include <string.h>

#include <stdlib.h>

#include <stdint.h>

#include <iostream>

#include <string>

#include <linux/input.h>

#include <linux/joystick.h>

#include <lo/lo.h>

using namespace std;

/** \class Joystick_Device

 \brief Handles a Joystick device

 Uses the Linux joystick event system to open, read, and close a joystick

*/

class Joystick_Device

{

 public:

 Joystick_Device();

 ~Joystick_Device();

 /**

 \brief Open linux joystick device

 \param dev device name aka "/dev/input/js0"

 returns 0 on success and -1 on failure

 */

 int openDev(char *dev);

 /**

 \brief Close joystick device

 */

 void closeDev();

 /** \brief Setup the OSC connection info

 \param ip_ ip address to OSC server to send to, NULL sets localhost "127.0.0.1"

 \param port_ port number of OSC server, ex. "4000"

 \param osc_addr OSC address to send to, ex. "/test/serial/1"

 */

 void setupOSC(char *ip_, char *port_, char *osc_addr);

 /**

 \brief Handles device events and sends correpsonding OSC messages

 Call this inside a loop, does not block, does nothing if joy has not been opened

 */

 void listen();

 /**

 \brief Print device info

 */

 void printInfo();

 /**

 \brief Get device name i.e. "/dev/input/js0"

 */

 char inline *devName() {return dev_name;}

 /**

 \brief Get joystick name

 */

 char inline *name() {return js_name;}

 /**

 \brief Get number of Axes

 */

 int inline numAxes() {return num_axes;}

 /**

 \brief Get number of buttons

 */

 int inline numButtons() {return num_buttons;}

 /**

 \brief Print all of the events?

 \param yesno true = print all device events (buttons, axes, etc)

 */

 void inline printEvents(bool yesno) {print_events = yesno;};

 /** \brief Returns true if device is open */

 inline bool isOpen() {if(dev_fd > -1) return true; else return false;}

 protected:

 private:

 // linux joystick info

 char *dev_name;

 char *js_name;

 int dev_fd;

 int num_axes;

 int num_buttons;

 fd_set set; // set for select

 timeval tv; // timeout for select

 js_event event; // joystick event struct

 // osc connection info

 lo_address osc_server;

 char *ip;

 char *port;

 char *addr;

 string axis_addr;

 string button_addr;

 // printing control

 bool print_events;

};

#endif // JOYSTICK_DEVICE_H

/* Joystick_Device.cpp

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#include "Joystick_Device.h"

Joystick_Device::Joystick_Device()

{

 // linux joystick info

 dev_name = NULL;

 js_name = NULL;

 dev_fd = -1;

 num_axes = 0;

 num_buttons = 0;

 // setup timeouts

 tv.tv_sec = 1;

 tv.tv_usec = 0;

 // osc connection info

 osc_server = NULL;

 ip = "";

 port = "";

 addr = "";

 axis_addr = "";

 button_addr = "";

 // printing control

 print_events = false;

}

Joystick_Device::~Joystick_Device()

{

 //dtor

}

/* open device with linux joystick dev name aka /dev/js0

 returns 0 on success and -1 on failure */

int Joystick_Device::openDev(char *dev)

{

 // open the dev

 string dev_path = "/dev/input/" + (string) dev;

 if((dev_fd = open((char *) dev_path.c_str(), O_RDONLY)) < 0)

 {

 cout << "Joystick_Device: Bad joystick device: "

 << dev << " " << strerror(errno) << endl;

 return -1;

 }

 dev_name = dev;

 // set nonblocking

 fcntl(dev_fd, F_SETFL, O_NONBLOCK);

 // query for device info

 int version;

 ioctl(dev_fd, JSIOCGVERSION, &version);

 // exit if using old (non-event) joystick api

 if(version < 0x010000)

 {

 cout << "Joystick_Device: driver for " << dev_name

 << " uses old joy device version < 1.0" << endl;

 return -1;

 }

	 ioctl(dev_fd, JSIOCGAXES, (int) &num_axes);

	 ioctl(dev_fd, JSIOCGBUTTONS, (int) &num_buttons);

 js_name = new char[128];

	 ioctl(dev_fd, JSIOCGNAME(128), js_name);

 return 0;

}

/* close device */

void Joystick_Device::closeDev()

{

 // close joystick

 close(dev_fd);

 // free addr

 lo_address_free(osc_server);

 // reinit vals incase we want to reuse this object

 js_name = NULL;

 dev_fd = -1;

 num_axes = 0;

 num_buttons = 0;

 // osc connection info

 osc_server = NULL;

 ip = "";

 port = "";

 addr = "";

 axis_addr = "";

 button_addr = "";

}

/* setup the OSC connection info */

void Joystick_Device::setupOSC(char *ip_, char *port_, char *osc_addr)

{

 ip = ip_;

 port = port_;

 addr = osc_addr;

 // setup osc send address

 osc_server = lo_address_new(ip, port);

 // set addr

 axis_addr = addr + (string) "/axis";

 button_addr = addr + (string) "/button";

}

/* handles device events and sends correpsonding OSC messages

 call this inside a loop, is nonblocking */

void Joystick_Device::listen()

{

 // device is not open, so dont do anything

 if(dev_fd == -1)

 return;

 FD_ZERO(&set);

 FD_SET(dev_fd, &set);

 if(!select(dev_fd+1, &set, NULL, NULL, &tv))

 return; // nothing read

 if(read(dev_fd, &event, sizeof(event)) != sizeof(event)) // bad read

 {

 dev_fd = -1; // mark as bad so no more reading

 if(errno == ENODEV) return; // exit if device has already been unplugged (no device)

 cout << "Joystick \"" << dev_name << "\" read error: " << strerror(errno) << endl;

 return;

 }

 if(print_events) // debug printing

 cout << " Joy: " << dev_name

 << " Button: " << (int) event.number

 << " State: " << (int) event.value << endl;

 // check for messages

 switch (event.type)

 {

 case 1: // buttons

 {

 if(lo_send(osc_server, button_addr.c_str(), "ii", event.number, event.value) == -1)

 if(print_events)

 cout << "OSC error" << lo_address_errno(osc_server)

 << lo_address_errstr(osc_server) << endl;

 break;

 }

 case 2: // axes

 {

 if(lo_send(osc_server, axis_addr.c_str(), "ii", event.number, event.value) == -1)

 if(print_events)

 cout << "OSC error" << lo_address_errno(osc_server)

 << lo_address_errstr(osc_server) << endl;

 break;

 }

 } // end switch

 return; //ok

}

/* print device info */

void Joystick_Device::printInfo()

{

 cout << "OSC Addr: " << addr << endl;

 cout << " Dev Name: " << dev_name << endl;

 cout << " Name: " << js_name << endl;

 cout << " Num Axes: " << num_axes<< endl;

 cout << " Num Buttons: " << num_buttons << endl;

}

/* Osc_Server.h

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#ifndef OSC_SERVER_H

#define OSC_SERVER_H

#include "lo/lo.h" // liblo

/** \class Osc_Server

 \brief Osc server class

 Starts, stops, and assigns callback functions

*/

class Osc_Server

{

 public:

 Osc_Server();

 ~Osc_Server();

 /**

 \brief Setup the osc server

 \param port The port number to recieve on

 \param error function pointer to a method to handle recieve errors

 */

 void setup(const char *port, void (*error)(int num, const char *msg, const char *where));

 /*

 \brief Sets the server error callback function

 \param error function pointer to a method to handle recieve errors

 Note: must be called *before* calling setRecv

 */

 // void setErrorCallback(void (*error)(int num, const char *msg, const char *where));

 /**

 \brief Sets an OSC path handling callback

 \param path The OSC path the callback will handle

 \param type The types of the data items in the message

 \param method function pointer to a method to handle the OSC message with path and type

 This method will be called whenever a message is recieved at OSC address "path" and contains

arguments or "type".

 */

 void addRecvMethod(const char *path, const char *types,

 int (*method)(const char *path, const char *types, lo_arg **argv, int argc, lo_message

msg, void *user_data));

 /**

 \brief Removes a OSC path handling callback

 \param path The OSC path the callback will handle

 \param type The types of the data items in the message

 Removes the callback method set for OSC address "path" and arguments of "type".

 */

 void delRecvMethod(const char *path, const char *types);

 /**

 \brief Starts the listening server

 When running, the server will call any callback methods set using addRecvMethod.

 */

 void startListening();

 /**

 \brief Stops the listening server

 */

 void stopListening();

 protected:

 private:

 lo_server_thread recv_thread; // osc recieve thread

 // void (*error_callback)(int num, const char *msg, const char *where); // function pointer to error

callback

};

#endif

/* Osc_Server.h

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#include "Osc_Server.h"

// CONSTRUCTOR / DESTRUCTOR

Osc_Server::Osc_Server()

{

 recv_thread = NULL;

}

Osc_Server::~Osc_Server()

{

 // free mem

 if(recv_thread != NULL) lo_server_thread_free(recv_thread);

}

// SET PORT

void Osc_Server::setup(const char *port, void (*error)(int num, const char *msg, const char *where))

{

 // create new recv thread with port num

 recv_thread = lo_server_thread_new(port, error);

}

// SERVER CALLBACKS

/*

void Osc_Server::setErrorCallback()

{

 error_callback = error;

}

*/

void Osc_Server::addRecvMethod(const char *path, const char *types,

 int (*method)(const char *path, const char *types, lo_arg **argv, int argc, lo_message

msg, void *user_data))

{

 lo_server_thread_add_method(recv_thread, path, types, method, NULL);

}

void Osc_Server::delRecvMethod(const char *path, const char *types)

{

 lo_server_del_method(recv_thread, path, types);

}

// SERVER CONTROL

void Osc_Server::startListening()

{

 lo_server_thread_start(recv_thread);

}

void Osc_Server::stopListening()

{

 lo_server_thread_stop(recv_thread);

}

/* Playlist.h

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#ifndef PLAYLIST_H

#define PLAYLIST_H

#include <iostream>

#include <fstream>

#include <string>

#include <vector>

using namespace std;

/** \class Playlist

 \brief Loads and handles a circular play list of filenames

*/

class Playlist

{

 public:

 /** \brief Constructor

 \param filename of the playlist file to open, including path

 */

 Playlist(char *filename_);

 virtual ~Playlist();

 /** \brief Load the playlist

 Ignores lines beginning with '#',

 format is one file per line, including full path

 ex.

 # this is a comment

 /home/user/awesomesong.pd

 returns 0 on success or -1 if the file cannot be loaded (i.e. found)

 Note: very dumb, just reads lines, so watch the whitespace in the playlist file

 */

 int load();

 /** \brief Return the current song filename

 Includes fullpath: /home/user/awesomesong.pd

 */

 inline string song() {return *pos;};

 /** \brief Returns the current song filename

 Does not include path: awesomesong.pd

 */

 string file();

 /** \brief Returns the current song path

 Does not include filename: /home/user/

 */

 string path();

 /** \brief Move to the next song in the playlist */

 void next();

 /** \brief Move to the previous song in the playlist */

 void prev();

 /** \brief Print the playlist */

 void print();

 /** \brief Returns the playlist file filename */

 inline char *name() {return filename;};

 protected:

 private:

 char *filename; // playlist filename

 vector<string> list; // string vector of playlist items

 vector<string>::iterator pos; // current position in the playlist

};

#endif // PLAYLIST_H

/* Playlist.h

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#include "Playlist.h"

Playlist::Playlist(char *filename_)

{

 filename = filename_;

 pos = list.begin();

}

Playlist::~Playlist()

{

 //dtor

}

int Playlist::load()

{

 ifstream fin(filename, ios::in);

 if(!fin) // open failed

 {

 cout << "Playlist: error opening file \"" << filename << "\"" << endl;

 return -1;

 }

 cout << "Playlist: loading " << filename << endl;

 string s;

 int i = 0;

 while(getline(fin, s))

 {

 if(s.size() >= 1 && s[0] == '#') {}

 // cout << " ignoring comment: " << s << endl;

 else if(s.size() >= 2)

 {

 cout << " Path " << i << " " << s << endl;

 list.push_back(s);

 i++;

 }

 }

 cout << "Playlist: ready" << endl;

 pos = list.begin();

 fin.close();

 return 0;

}

string Playlist::file()

{

 int loc = pos->find_last_of("/") + 1;

 return pos->substr(loc, pos->size());

}

string Playlist::path()

{

 int loc = pos->find_last_of("/");

 return pos->substr(0, loc);

}

void Playlist::next()

{

 pos++;

 if(pos == list.end()) pos = list.begin();

}

void Playlist::prev()

{

 if(pos == list.begin())

 pos = list.end()-1;

 else

 pos--;

}

void Playlist::print()

{

 int i = 0;

 for(vector<string>::iterator c = list.begin(); c < list.end(); c++)

 {

 cout << i << " " << *c << endl;

 i++;

 }

}

/* Serial_Device.h

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#ifndef SERIAL_DEVICE_H

#define SERIAL_DEVICE_H

#include <unistd.h>

#include <fcntl.h>

#include <termios.h>

#include <errno.h>

#include <iostream>

#include <string>

#include <errno.h>

#include <lo/lo.h>

using namespace std;

/** \class Serial_Device

 Template class for serial device handling

*/

class Serial_Device

{

 public:

 Serial_Device();

 ~Serial_Device();

 /** \brief Open serial port with the dev name and speed

 \param dev name of serial port device to open, ex. "/dev/ttyS0"

 \param baud baud speed of the device (see setBaud) ex. "9600"

 returns 0 on success and -1 on failure

 */

 int openDev(char *dev, char *baud);

 /** \brief Close serial port */

 void closeDev();

 /** \brief Setup the OSC connection info

 \param ip_ ip address to OSC server to send to, NULL sets localhost "127.0.0.1"

 \param port_ port number of OSC server, ex. "4000"

 \param osc_addr OSC address to send to, ex. "/test/serial/1"

 */

 void setupOSC(char *ip_, char *port_, char *osc_addr);

 /** \brief Listen for incoming bytes and null terminates buffer

 returns number of bytes read on success or -1 on read error,

 will return 0 if no data to be read

 Note: nonblocking function using select, so call it within a loop

 */

 int listen();

 /** \brief Send some bytes from a char device

 \param send_chars char buffer to send

 \param n_bytes number of bytes to send from send_chars buffer

 returns number of bytes read or -1 on error

 Note: returns 0 if device is not open

 */

 int send(unsigned char *send_chars, int n_bytes);

 /** \brief Set the speed of the serial device

 \param baud baud speed of the device:

 50	 50 baud

 75	 75 baud

 110	 110 baud

 134	 134.5 baud

 150	 150 baud

 200	 200 baud

 300	 300 baud

 600	 600 baud

 1200	1200 baud

 1800	1800 baud

 2400	2400 baud

 4800	4800 baud

 9600	9600 baud

 19200	19200 baud

 38400	38400 baud

 57600	57,600 baud

 115200	115,200 baud

 */

 int setBaud(char *baud);

 /** \brief Get pointer to char buffer

 returns pointer to serial device input buffer

 */

 inline unsigned char *getBuffer() {return buffer;};

 /** \brief Returns true if device is open */

 inline bool isOpen() {if(dev_fd > -1) return true; else return false;}

 protected:

 // serial device info

 char *dev_name; // port name of the serial device

 int dev_fd; // serial device file descriptor

 unsigned char *buffer; // Input buffer

 int num_bytes; // Number of bytes read

 fd_set set; // set for select

 timeval tv; // timeout for select

 // osc connection info

 lo_address osc_server;

 char *ip;

 char *port;

 char *addr;

 private:

};

#endif // SERIAL_DEVICE_H

/* Serial_Device.cpp

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#include "Serial_Device.h"

Serial_Device::Serial_Device()

{

 // serial device info

 dev_name = NULL;

 dev_fd = -1;

 buffer = new unsigned char[255];

 num_bytes = 0;

 // setup timeouts

 tv.tv_sec = 1;

 tv.tv_usec = 0;

 // osc connection info

 osc_server = NULL;

 ip = NULL;

 port = NULL;

 addr = NULL;

}

Serial_Device::~Serial_Device()

{

 //dtor

}

/* open serial port with the dev name and speed

 returns 0 on success and -1 on failure */

int Serial_Device::openDev(char *dev, char *baud)

{

 // open port : read/write | not controlling | non blocking | ignore DCD state

 if((dev_fd = open(dev, O_RDWR | O_NOCTTY | O_NONBLOCK | O_NDELAY)) == -1)

 {

 // Could not open the port.

 cout << "Serial_Device: Unable to open \"" << dev << "\": " << strerror(errno) << endl;

 return -1; // error

 }

 fcntl(dev_fd, F_SETFL, FNONBLOCK); // set nonblocking

 setBaud(baud); // set speed

 dev_name = dev;

 return 0; // ok

}

/* close serial device */

void Serial_Device::closeDev()

{

 // close serial port

 close(dev_fd);

 // free addr

 lo_address_free(osc_server);

 // reinit vals incase we want to reuse this object

 dev_fd = -1;

 // osc connection info

 /*

 osc_server = NULL;

 ip = NULL;

 port = NULL;

 addr = NULL;

 */

}

/* setup the OSC connection info */

void Serial_Device::setupOSC(char *ip_, char *port_, char *osc_addr)

{

 ip = ip_;

 port = port_;

 addr = osc_addr;

 // setup osc send address

 osc_server = lo_address_new(ip, port);

}

/* listen for incoming bytes and null terminates buffer

 returns number of bytes read

 Note: nonblicking function*/

int Serial_Device::listen()

{

 // device is not open, so dont do anything

 if(dev_fd == -1)

 return 0;

 FD_ZERO(&set);

 FD_SET(dev_fd, &set);

 if(!select(dev_fd+1, &set, NULL, NULL, &tv))

 return 0; // nothing read

 // read is nonblocking

 if((num_bytes = read(dev_fd, buffer, sizeof(buffer))) < 0)

 {

 cout << "Serial Device \"" << dev_name << "\" read error: " << strerror(errno) << endl;

 return -1;

 }

 // null terminate for a cstring

 buffer[num_bytes] = '\0';

 return num_bytes; // something read

}

/* send some bytes from a char device

 returns number of bytes read or -1 on error */

int Serial_Device::send(unsigned char *send_chars, int n_bytes)

{

 int n = 0;

 if((n = write(dev_fd, send_chars, n_bytes)) == -1)

 {

 cout << "Serial Device \"" << dev_name << "\" send error: " << strerror(errno) << endl;

 }

 return n;

}

/* set the baud rate of the serial Device

 returns 0 on success or -1 on error */

int Serial_Device::setBaud(char *baud)

{

 struct termios options;

 string b = baud;

 int speed = -1;

 string speeds[18] = {"50", "75", "110", "134", "150", "200", "300", "600", "1200", "1800",

 "2400", "4800", "9600", "19200", "38400", "57600", "115200"};

 int bauds[18] = {B50, B75, B110, B134, B150, B200, B300, B600, B1200, B1800, B2400,

 B4800, B9600, B19200, B38400, B57600, B115200};

 // check for valid baud

 for(int i = 0; i < 18; i++)

 {

 if(b == speeds[i])

 {

 speed = bauds[i];

 break;

 }

 }

 if(speed == -1) // bad baud

 cout << "Serial_Device: bad baud rate \"" << baud << "\"" << endl;

 return -1;

 // Get the current options for the port...

 tcgetattr(dev_fd, &options);

 // Set the baud rates

 cfsetispeed(&options, speed);

 cfsetospeed(&options, speed);

 // Enable the receiver and set local mode..

 options.c_cflag |= (CLOCAL | CREAD | CS8);

 // No parity (8N1)

 options.c_cflag &= ~PARENB;

 options.c_cflag &= ~CSTOPB;

 options.c_cflag &= ~CSIZE; // important to set size last

 // No hardware flow control

 options.c_cflag &= ~CRTSCTS;

 //Set the new options for the port...

 tcsetattr(dev_fd, TCSANOW, &options);

 return 0; // ok

}

/* Sound_Feedback.h

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#ifndef SOUND_FEEDBACK_H

#define SOUND_FEEDBACK_H

#include <string>

#include "Application.h"

/** \class Sound_Feedback

 \brief Plays soundfiles

 Calls alsaplayer with jack output (alsaplayer -i text -o jack)

 to play sound files

*/

class Sound_Feedback

{

 public:

 Sound_Feedback();

 virtual ~Sound_Feedback();

 /**

 \brief Plays a soundfile using alsaplayer

 \param filename name of the soundfile to play

 */

 int play(string filename);

 protected:

 private:

 Application sound_player;

};

#endif // SOUND_FEEDBACK_H

/* Sound_Feedback.cpp

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#include "Sound_Feedback.h"

Sound_Feedback::Sound_Feedback()

{

 //ctor

}

Sound_Feedback::~Sound_Feedback()

{

 //dtor

}

int Sound_Feedback::play(string filename)

{

 //cout << "alsaplayer -i text -o jack " + filename << endl;

 sound_player.setApp("alsaplayer -i text -o jack " + filename);

 sound_player.launch();

 return 0;

}

/* Unit.h

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#ifndef UNIT_H

#define UNIT_H

#include <string>

#include <iostream>

#include <sstream>

#include <signal.h>

#include <vector>

#include <sys/types.h>

#include <sys/wait.h>

#include <lo/lo.h>

#include <SDL/SDL.h>

#include <time.h>

#include <sys/time.h>

#include "Application.h"

#include "Osc_Server.h"

#include "SDL_Device.h"

#include "Serial_Device.h"

#include "Sound_Feedback.h"

/** \class Unit

 \brief Controls main applications

 Starts and stops Jack and Pure Data, calls aconnect to connect alsa MIDI devices

*/

class Unit

{

 public:

 Unit();

 virtual ~Unit();

 /**

 \brief Starts the Jack realtime audio daemon

 \param cmd commandline string to start Jack,

 i.e. 'jackd -R -p128 -dalsa -dhw:1 -r44100 -p512 -n3 -S'

 */

 int startJack(string cmd);

 /**

 \brief Starts Pure Data

 \param cmd commandline string to start Pd, i.e. 'pd -alsamidi -jack'

 */

 int startPd(string song);

 /**

 \brief Calls aconnect to connect alsa MIDI devices

 \param outport MIDI output to connect

 \param inport MIDI input to connect

 You can discover the names by running 'aconnect -lio'

 */

 int aconnect(string outport, string inport);

 /**

 \brief Stops Jack

 Tries to shutdown Jack nicely by sending it a SIGQUIT, but will SIGKILL it

 after 3 secs if it hangs (this can be a problem every now and then)

 */

 int stopJack();

 /**

 \brief Stops Pure Data

 Shutdowns Pd nicely by sending it a SIGINT

 */

 int stopPd();

 /**

 \brief Waits for any child processes

 A waitpid wrapper

 */

 void cleanup();

 protected:

 private:

 Application jack;

 Application pd;

};

#endif // UNIT_H

/* Unit.cpp

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#include "Unit.h"

Unit::Unit()

{

 //ctor

}

Unit::~Unit()

{

 //dtor

}

int Unit::startJack(string cmd)

{

 jack.setApp(cmd);

 jack.launch();

 // not running?

 while(jack.status() == 'N')

 return -1;

 return 0;

}

int Unit::startPd(string cmd)

{

 pd.setApp(cmd);

 pd.launch();

 sleep(1);

 // not running?

 if(pd.status() == 'N')

 return -1;

 return 0;

}

int Unit::aconnect(string outport, string inport)

{

 FILE *fpipe;

 char line[100];

 if(!(fpipe = (FILE*) popen("aconnect -lio", "r")))

 {

 cout << "Unit: aconnect -lio failed run" << endl;

 return -1; // error

 }

 int in_id = -1, out_id = -1;

 while(fgets(line, sizeof line, fpipe) != NULL)

 {

 string temp = line;

 if(temp.find(inport) != string::npos && temp.find("client") != string::npos)

 {

 istringstream ss(temp);

 string ignore;

 ss >> ignore >> in_id;

 cout << " Midi inport : " << inport << " id: " << in_id << endl;

 }

 if(temp.find(outport) != string::npos && temp.find("client") != string::npos)

 {

 istringstream ss(temp);

 string ignore;

 ss >> ignore >> out_id;

 cout << " Midi outport : " << outport << " id: " << out_id << endl;;

 }

 }

 if(in_id == -1 || out_id == -1)

 {

 cout << "Unit: aconnect could not connect " << outport << " to " << inport << endl;

 return -1;

 }

 ostringstream cmd;

 cmd << "aconnect " << out_id << " " << in_id;

 cout << cmd.str() << endl;

 Application aconnect(cmd.str());

 aconnect.launch();

 return 0;

}

int Unit::stopJack()

{

 jack.sendSignal(SIGQUIT);

 time_t timestamp;

 time_t now;

 double t;

 time(×tamp);

 // not running?

 while(jack.status() == 'N')

 {

 time(&now);

 if((t = difftime(now, timestamp)) > 2) // 3 sec timeout

 {

 // if jack stalls due to soundcard "in use", then kill it mean likes

 jack.sendSignal(SIGKILL);

 cout << "Unit: jackd hung, so I had to kill it" << endl;

 return -1;

 }

 }

/*

 sleep(1);

 // if jack stalls due to soundcard "in use", then kill it mean likes

 if(jack.status() != 'N')

 {

 jack.sendSignal(SIGKILL);

 cout << "Unit: jackd hung, so I had to kill it" << endl;

 }

*/

 return 0;

}

int Unit::stopPd()

{

 pd.sendSignal(SIGINT);

 return 0;

}

void Unit::cleanup()

{

 if(waitpid(-1, NULL, 0) == -1)

 cout << "Wait error" << endl;

}

#
#	config text file
#	'#' lines are comments
#
#	format: key value
#	must be a space between!

server stuff
server_addr 127.0.0.1
server_port 7770

send osc stuff
send_addr 127.0.0.1
send_port 8880

button box dev name
button_box /dev/ttyUSB0
baud 9600

sound folder (no trailing slash)
sound_folder sounds

don't use the realtime option on both jack and pd at the same time,
it can cause problems

jack commandline
jack_command jackd -R -p128 -dalsa -dhw:1 -r44100 -p512 -n3 -S

pd commandline with control patch
puredata_command pd -alsamidi -jack /home/dano/Creative/pd/Unit-Control.pd

log? - aka print all output to a log file, otherwise to stdout
log false

debug - aka print lots of events
debug false

#
#	playlist text file
#
#	'#' lines are comments
#

/home/dano/Creative/pd/BimBom.pd
/home/dano/Creative/pd/RunningMan.pd

#
#	joystick name mappings
#	'#' lines are comments
#
#	format: key value
#	must be a space between!

"LuenKeung Co.,Ltd USB Joystick" ps2black

"Saitek P990 Dual Analog Pad" saitek

"WiseGroup.,Ltd MP-8866 Dual USB Joypad" ps2purple

/* main.cpp

 unit-announce

 Copyright (C) 2007 Dan Wilcox

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

*/

#include <iostream>

#include <unistd.h>

#include <string>

#include "lo/lo.h"

using namespace std;

int main(int argc, char *argv[])

{

 if(argc < 4)

 {

 cout << "Usage: unit-announce <osc_dest_addr> <osc_dest_port> <device_name>" << endl << endl;

 exit(EXIT_FAILURE);

 }

 string addr = (string) argv[1];

 string port = (string) argv[2];

 string device = (string) argv[3];

 // check address arg

 for(int c = 0; c < (int) addr.length(); c++)

 {

 if(!isgraph((char) addr.at(c)))

 {

 cout << "Invalid addr name \"" << addr << "\"" << endl;

 exit(EXIT_FAILURE);

 }

 }

 // check port arg

 for(int c = 0; c < (int) port.length(); c++)

 {

 if(!isdigit((char) port.at(c)))

 {

 cout << "Invalid port number \"" << port << "\"" << endl;

 exit(EXIT_FAILURE);

 }

 }

 // check device name arg

 for(int c = 0; c < (int) port.length(); c++)

 {

 if(!isalnum((char) port.at(c)))

 {

 cout << "Invalid device name \"" << device << "\"" << endl;

 exit(EXIT_FAILURE);

 }

 }

 // send to localhost

 lo_address t = lo_address_new(NULL, (char *) port.c_str());

 if(lo_send(t, (char *) addr.c_str(), "s", (char *) device.c_str()) == -1)

 {

 cout << "OSC error " << lo_address_errno(t) << " " << lo_address_errstr(t) << endl;

 exit(EXIT_FAILURE);

 }

 cout << "Sent: <" << addr << ", "<< device << "> at port " << port << endl;

 return 0;

}

#

#	unit-daemon udev rules

#

#	launches unit-announce to send osc notification of device insert/removal to unit-daemon

#

#	"add" actions are device insertions and device attributes are used to match the device

#

#	"remove" actions are matched using ENV variables since the SYSFS node for the device is gone

#	and thus the attributes have been deleted

#

#	rules built using:

#	- udevinfo -a -p $(udevinfo -q path -n /dev/*device*) : attributes

#	- sudo udevmonitor --env /dev/*device* : events and env vars

#

##

##

#	joystick devices

#

KERNEL=="js[0-9]*", ACTION=="add", RUN="/home/dano/thesis/src/unit-announce/bin/Release/unit-announce

/unit/device/sdl/start 7770 %k"

KERNEL=="js[0-9]*", ACTION=="remove", RUN="/home/dano/thesis/src/unit-announce/bin/Release/unit-announce

/unit/device/sdl/stop 7770 %k"

##

#	USB tty serial devices

#

KERNEL=="ttyUSB[0-9]*", ACTION=="add", SUBSYSTEMS=="tty",

RUN="/home/dano/thesis/src/unit-announce/bin/Release/unit-announce /unit/device/start 7770 %k"

KERNEL=="ttyUSB[0-9]*", ACTION=="remove", SUBSYSTEMS=="tty",

RUN="/home/dano/thesis/src/unit-announce/bin/Release/unit-announce /unit/device/stop 7770 %k"

##

#	Video 4 Linux devices aka webcams, etc

#

KERNEL=="video[0-0]*", ACTION=="add", SUBSYTEM=="video4linux",

RUN="/home/dano/thesis/src/unit-announce/bin/Release/unit-announce /unit/device/start 7770 %k"

KERNEL=="video[0-9]*", ACTION=="remove", SUBSYSTEM=="video4linux",

RUN="/home/dano/thesis/src/unit-announce/bin/Release/unit-announce /unit/device/stop 7770 %k"

	Introduction
	Definitions

	Motivation
	A Critical Survey on the Nature of Post-Digital Instruments
	The Post-Digital Aesthetic
	32kg: Performance Systems for a Post-Digital Age
	Some Remarks on Musical Instrument Design at STEIM
	Making Motion Musical
	The Art of Interaction
	Digital Instruments and Players: Part I --- Efficiency and Apprenticeship
	Theses on liveness

	Background
	The One-Man Band
	Traditional One-Man Band Instruments
	Unique Traditional One-Man Bands
	Modern One-Man Bands
	Relationship Between Instrument and Musician
	The One-man Band As A Cyborg Entity

	Relevant Previous Works
	The Soundwalk
	Exceptional Body Interfaces
	Wearable Interfaces
	Tangible Performances

	Experimental Performances
	robotcowboy helmet prototype
	robotcowboy button_box

	robotcowboy unit
	Design Requirements
	Hardware Implementation
	Computer
	Soundcard
	Input Devices

	Software Implementation
	Operating System
	Sound Generation and Processing Environment
	unit-daemon
	Interaction and Recording Affordances

	Velocipede: A Prototype Performance Mapping

	Results
	Mobility
	Performance
	Instrumentality
	Improvisation
	Reliability
	Low Cost

	Future Work
	Conclusions
	unit-daemon Source Code

